高中数学讲义圆锥曲线综合.板块五.定比分点问题.学生

典例分析【例1】设双曲线:与直线相交于两个不同的点、.⑴求双曲线的离心率的取值范围:⑵设直线与轴的交点为,且,求的值.【例2】已知椭圆的中心在原点,离心率为,一个焦点是(是大于的常数).⑴求椭圆的方程;⑵设是椭圆上的一点,且过点、的直线与轴交于点.若,求直线的斜率.【例3】已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线,垂足为,线段的垂直平分线交于点.⑴求动点的轨迹的方程;⑵过点作直线交曲线于两个不同的点和,设,若,求的取值范围.【例4】已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足,.⑴当点在轴上移动时,求点的轨迹的方程;板块五.定比分点问题⑵设为轨迹上两点,且,,求实数,使,且【例5】在平面直角坐标系中,抛物线的顶点在原点,经过点,其焦点在轴上.⑴求抛物线的标准方程;⑵求过点,且与直线垂直的直线的方程;⑶设过点的直线交抛物线于两点,,记和两点间的距离为,求关于的表达式.11AyxO【例6】椭圆的中心为坐标原点,焦点在轴上,离心率,椭圆上的点到焦点的最短距离为,直线与轴交于点,与椭圆交于相异两点、,且⑴求椭圆方程;⑵若的取值范围.【例7】给定抛物线C:24yx,F是C的焦点,过点F的直线l与C相交于A、B两点.⑴设l的斜率为1,求OA�与OB�夹角的余弦值;⑵设FBAF�,若[49],,求l在y轴上截距的变化范围.【例8】设分别是直线和上的两个动点,并且,动点满足.记动点的轨迹为,⑴求轨迹的方程;⑵若点的坐标为,、是曲线上的两个动点,且,求实数的取值范围.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?