徐嘉颖11.25函数的基本性质

个性化教学辅导教案2学科:数学任课教师:罗捷授课时间:2012年11月25日(星期)姓名徐嘉颖年级高一性别女总课时____第_2课教学课题函数的基本性质教学目标1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.3)了解奇偶性的概念,回会利用定义判断简单函数的奇偶性。教学重难点(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。教学过程课前检查作业完成情况:优□良□中□差□一、函数的单调性1.单调函数的定义(1)增函数:一般地,设函数的定义域为:如果对于属于内某个区间上的任意两个自变量的值、,当时都有,那么就说在这个区间上是增函数。(2)减函数:如果对于属于I内某个区间上的任意两个自变量的值、,当时都有,那么就说在这个区间上是减函数。(3)单调性:如果函数在某个区间是增函数或减函数。那么就说函数在这一区间具有(严格的)单调性,这一区间叫做的单调区间。2、单调性的判定方法(1)定义法:判断下列函数的单调区间:(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。(3)复合函数的单调性的判断:设,,,都是单调函数,则在上也是单调函数。①若是上的增函数,则与定义在上的函数的单调性相同。②若是上的减函数,则与定义在上的函数的单调性相同。即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”)练习:(1)函数的单调递减区间是,单调递增区间为.(2)的单调递增区间为.3、函数单调性应注意的问题:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数4.例题分析证明:函数在上是减函数。说明:一个函数的两个单调区间是不可以取其并集,比如:不能说是原函数的单调递减区间;练习:1..根据单调函数的定义,判断函数的单调性。2.根据单调函数的定义,判断函数的单调性。二、函数的奇偶性1.奇偶性的定义:(1)偶函数:一般地,如果对于函数的定义域内任意一个,都有,那么函数就叫做偶函数。例如:函数,等都是偶函数。(2)奇函数:一般地,如果对于函数的定义域内任意一个,都有,那么函数就叫做奇函数。例如:函数,都是奇函数。(3)奇偶性:如果函数是奇函数或偶函数,那么我们就说函数具有奇偶性。说明:从函数奇偶性的定义可以看出,具有奇偶性的函数:(1)其定义域关于原点对称;(2)或必有一成立。因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算,看是等于还是等于,然后下结论;若定义域关于原点不对称,则函数没有奇偶性。(3)无奇偶性的函数是非奇非偶函数。(4)函数既是奇函数也是偶函数,因为其定义域关于原点对称且既满足也满足。(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。偶函数的图象关于轴对称,反过来,如果一个函数的图形关于轴对称,那么这个函数是偶函数。(6)奇函数若在时有定义,则.2、函数的奇偶性判定方法(1)定义法(2)图像法(3)性质罚3.例题分析:判断下列函数的奇偶性:(1)()(2)()说明:在判断与的关系时,可以从开始化简;也可以去考虑或;当不等于0时也可以考虑与1或的关系。五.小结:1.函数奇偶性的定义;2.判断函数奇偶性的方法;3.特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。二、函数的最大值或最小值学习评价※自我评价你完成本节学案的情况为().A.很好B.较好C.一般D.较差经典例题1.下面说法正确的选项()A.函数的单调区间可以是函数的定义...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?