干货大牛数据分析师养成日记

以上是一位资深的数据分析师写的自嘲的段子,却是很多分析师的真实写照。在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。最近接到一个职业访谈的邀请,要给对数据分析感兴趣的新人Y(目前在知名电商从事系统开发和维护)一些建议,才突然发现自己在这个领域打滚了一段时间,一阵感叹后,写下自己的一些体会,尽管不全面,但或许能够给新人一些借鉴。如有不妥地方,请各位数据大牛轻拍。一、数据分析师有哪些要求?1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的问题,只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。4、汇报和图表展现能力。这是临门一脚,做得再好的分析模型,如果不能很好地展示给领导和客户,成效就大打折扣,也会影响到数据分析师的职业晋升。二、请把数据分析作为一种能力来培养从广义来说,现在大多数的工作都需要用到分析能力,特别是数据化运营理念深入的今天,像BAT这样的公司强调全员参与数据化运营,所以,把它作为一种能力培训,将会让你终生受益。三、从数据分析的四个步骤来看清数据分析师需具备的能力和知识:数据分析的四个步骤(这有别于数据挖掘流程:商业理解、数据理解、数据准备、模型搭建、模型评估、模型部署),是从更宏观地展示数据分析的过程:获取数据、处理数据、分析数据、呈现数据。(一)获取数据获取数据的前提是对商业问题的理解,把商业问题转化成数据问题,要通过现象发现本质,确定从哪些纬度来分析问题,界定问题后,进行数据的采集。此环节,需要数据分析师具备结构化的思维和对商业问题的理解能力。推荐书籍:《金字塔原理》、麦肯锡三部曲:《麦肯锡意识》、《麦肯锡工具》、《麦肯锡方法》工具:思维导图、mindmanager软件(二)处理数据一个数据分析项目,通常数据处理时间占70%以上,使用先进的工具有利于提升效率,所以尽量学习最新最有效的处理工具,以下介绍的是最传统的,但却很有效率的工具:Excel:日常在做通报、报告和抽样分析中经常用到,其图表功能很强大,处理10万级别的数据很轻松。UltraEdit:文本工具,比TXT工具好用,打开和运行速度都比较快。ACCESS:桌面数据库,主要是用于日常的抽样分析(做全量统计分析,消耗资源和时间较多,通常分析师会随机抽取部分数据进行分析),使用SQL语言,处理100万级别的数据还是很快捷。Orcle、SQLsever:处理千万级别的数据需要用到这两类数据库。当然,在自己能力和时间允许的情况下,学习新流行的分布式数据库及提升自身的编程能力,对未来的职业发展也有很大帮助。分析软件主要推荐:SPSS系列:老牌的统计分析软件,SPSSStatistics(偏统计功能、市场研究)、SPSSModeler(偏数据挖掘),不用编程,易学。SAS:老牌经典挖掘软件,需要编程。R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。随着文本挖掘技术进一步发展,对非结构化数据的分析需求也越来越大,需要进一步关注文本挖掘工具的使用。(三)分析数据分析数据,需要用到各类的模型,包括关联规则、聚类、分类、预测模型等,其中一个最重要的思想是对比,任何的数据需要在参照系下进行对比,结论才有意义。推荐的书籍:1、《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,卢辉著,机械出版社。这本书是近年国内写得最好的,务必把它当作圣经一样来读。2、《谁说菜鸟不会数据分析(入门篇)》和《谁说菜鸟不会数据分析(工具篇)》,张文霖等编著。属于入门级的书,适合初学者。3、《统计学》第五版,贾俊平等编著,中国人民大学出版社。比较好的一本统计学的书。4、《数据挖掘导论》完整版,[美]Pang-NingTan等著,范明等翻译,人民邮电出版社。5、《数据挖掘概念与技术》,JiaweiHan等著,范明等翻译,机械工业出版社。这本书相对难一些。6、《市场研究定量分析方法与应用》,简明等编著,中国人民大学出版社。7、《问卷统计分析实务...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?