等比数列的相关公式和性质

第二节:等比数列的相关公式和性质1、等比数列的定义:,为公比2、通项公式:,为首项,为公比推广公式:,从而得3、等比中项(1)如果成等比数列,那么叫做与的等差中项.即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列4、等比数列的前n项和公式:(1)当时,(2)当时,(为常数)5、等比数列的判定方法(1)用定义:对任意的n,都有为等比数列(2)等比中项:(0)为等比数列(3)通项公式:为等比数列(4)前n项和公式:为等比数列6、等比数列的证明方法依据定义:若或为等比数列7、等比数列相关技巧:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设项的技巧,一般可设为通项:如奇数个数成等比,可设为…,…(公比为,中间项用表示);8、等比数列的性质:(1)当时①等比数列通项公式是关于n的带有系数的类指数函数,底数为公比②前n项和,系数和常数项是互为相反数的类指数函数,底数为公比(2)若mnst(,,,mnst),则。特别的,当2mnk时,得注:(3)列,为等比数列,则数列,,,(k为非零常数)均为等比数列。(4)数列为等比数列,每隔k(k)项取出一项()仍为等比数列(5)如果是各项均为正数的等比数列,则数列是等差数列(6)若为等比数列,则数列,,,成等比数列公比为(7)若为等比数列,则数列,,成等比数列(8)①当时,②当时,,③当q=1时,该数列为常数列(此时数列也为等差数列);④当q<0时,该数列为摆动数列。(9)在等比数列中,当项数为2n(n)时,,。(10)若是公比为q的等比数列,则注意:在含有参数的数列时,若是等比数列,一定要考虑到公比1q的特殊情况。解决等比数列问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于和的方程;②巧妙运用等比数列的性质,一般地运用性质可以化繁为简,减少运算量。等比数列练习1.已知数列满足()A.B.C.D.2.(2013年高考课标Ⅰ卷(文))设首项为,公比为的等比数列的前项和为,则()A.B.C.D.3.(2013年高考北京卷(文))若等比数列满足,则公比=__________;前项和=_____.4.(2013年高考广东卷(文))设数列是首项为,公比为的等比数列,则________5.(2013年高考江西卷(文))某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n∈N*)等于_____________.6.(2013年高考辽宁卷(文))已知等比数列是递增数列,是的前项和,若是方程的两个根,则____________.7.(2013年高考湖北卷(文))已知是等比数列的前项和,,,成等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由..8.(2013年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列满足:,,.(Ⅰ)求的通项公式及前项和;zhangwlx(Ⅱ)已知是等差数列,为前项和,且,,求.【答案】9.(2013年高考天津卷(文))已知首项为的等比数列的前n项和为,且成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)证明.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?