2019年3月湖北省七市(州)教科研协作体高三联合考试理科数学参考答案及评分说明)12小题,每小题5分一、选择题(共12.D8.A9.B10.D11.D1.A2.D3.B4.A5.C6.C7.B5分)二、填空题(共4小题,每小题334],[16.15.14.113.12742三、解答题(共计70分)60分)必做题(?分)17(12?23,(1)由已知得解:Cbsin??cosBAbcos?a323由正弦定理得,................3分BsincosAsinB??sinBsinCcosA?3?23sinBsinC,......................................4分??B)sin(A?即3?ABCsin(A?B)?sinC?0,又在中,??3sinB??∴??B6分.………………………………………是锐角,得,且B32abc??4?,由正弦定理得2()AsinBsinCsina?4sinA,c?4sinC………………………………………则有7分??2?A?23cos?A?43sin(??4sin?A4sinC?A?4sin(A)6sinA4sinc?a?)36………………………………………9分理科数学参考答案第1页(共7页)????????22?,00?A??,A??A??A?,?由得分……………1133623262?34?6a?c?故∴1,?A?)?sin(………………………………12分3.6218(12分)EFACFBD于,点,连接解:(1)连接交PB//?PBDEF分,在............................................2中,AECEF?面AEC,PB?面又AEC............................................................................................?PB//面4分A,APAC,AB系,(2)由题意知,为坐标原点,建立空间直角坐标两两互相垂直,如图以xyzO-x,AP,y,zAC,AB.分别为射线轴建立空间直角坐标系33),??(1,E(2,C(2,0,0),D?3,0),P(0,0,3),B(0,3,0),则22????0(?,M(xyz),PM?1)PB设,00,0???)?y(x,,z?3)?3(0,3,?3)M(0,3,3分…………6,得则000zP)zy,?AECn(x,,的法向量为设平面111133,(2,0,0)),ACAC?0AE?(1,???AE?0,nM及由1122E33?BA0?x?yz?y?11122则(0,1,1)?1y?.n,取,得?11?x0??1DC)?,z(x,ynMACx的一个法向量为设平面2222??(2,0,0)),??nAC?0AM(0,3AC,3?3?AMn??0,及由22??3?)z0?y(3?3?122,1)则……………………9分??n?(0,11?z??,得,取22??x0??2理科数学参考答案第2页(共7页)???EAC?M?为设二面角1?||2?10||n?n??????????cos10分.………………………………21则110||nn|?|21?)(1???221??122????9或-9??20??,解得化简得,33?110PB.E?M?AC?的余弦值为二面角???PM,310110EPBM?AC?时,二面角的余弦值为.………………………分12??PM故10319(12分)????0.6826?p(82.8?Xp(??87.2)?X???0.8)?(1)解:????0.9544?(80.6X?89.4)(2???X?0.94?2?)?pp????0.99740.98?X??X?91.6)?3?)?p(78.4p(??34分因为设备的数据仅满足一个不等式,故其性能等级为丙;....................?的可能取值“突变品”个数2,)由题意可知,样本中次品个数为(26,突变品个数为分2,,.......................................................6为0,11212C2CCC814224????????2)P(?P(?0)???P()?1?…………9分222CCC515156,,66?分布列为:所以??012128P151552182???2???1EY??0.…………………………………………………分12315155)第理科数学参考答案7(页3共页)20(12分4221ab?222c??a???be,即1分,..................解:(1)由题意得,2223a4a62222?6a3x?y?b?b?0x??y?与圆,直线相切得分…………32?22yx??1.分......................................4故椭圆的方程是34??y0Ax,xlkly?k(?4)k?,,,:()由题意得直线的斜率存在且不为零,设211??)yABQ(Bx,x,y中点,0220y(x?4)?k??2222220?64kk)x12?32k?x?(3?4yxy,并整理得联立,消去?1???43?2k322222)k?4(3?4k)(64k?12)?0x?x?32?(??由,,21234k?1111??k???k?0.....................................................k?6.故分解得且222222k?x16xk16k1212k?),?,??x(Q21??y?4)?k(x?,得,2224k3?002k3k?43?43?24k216k1121k?)?yyl?y??(x?x)???(x:由,即,0022kkk34?3?4k1k4??x?y?化简得:8分,........................................234k?k11k40?k?k??且,??m0x?,得令23?4k22k44???m10………………………………………分∴3234k?k4?k3311?40k???k4?8?k时,;当时,8????0k?当kk22)共(页第理科数学参考答案4页711m?0且??m??∴2211?m??m?lm?0................12且的取值范围...