浅谈微积分教学中的问题情境

浅谈微积分教学中的“问题情境”浅谈微积分教学中的“问题情境”摘要:本文将微积分概念融入到具体而生动的“问题情境”中,在问题情境化教学中帮助学生认知微积分实质,构建微积分知识体系,体会其数学思想,进而帮助学生形成数学应用意识,培养学生主动探究的精神,最终帮助学生形成良好的情感态度和价值观。关键词:微积分问题情境构建教学中图分类号:G64文献标识码:A文章编号:1673-9795(2013)04(b)-0145-01所谓的问题情境化教学,主耍是以提出问题,分析问题,解决问题为线索,并把这一线索始终贯穿于整个教学过程。问题情境化教学的意义就在于通过从学生感兴趣的问题入手,激发学生积极思考,使学生根据已有的知识和经验,形成自己对问题的认识和理解,并从中获得新知识,培养解决问题的能力。下面我们主耍从四个“问题情境”谈一下微积分的概念教学。1“极限”教学中的“问题情境”我们知道极限思想贯穿整个微积分的始终,是微积分的基本思想。因此,帮助学生构建极限思想是微积分教学首要的基本任务。学生对知识的接受是一个获得经验、思维投入的过程,是一个积极建构的过程,让学生经历和探索“问题情境”,可以促进知识的理解,积累数学活动的经验[1]。从历史上看,我国古代的截丈问题“一尺之極,日截其半,万世不竭”,还有刘徽的割圆术“割之弥细,所失弥小,割之又割,以至于不可割,则与圆合体而无所失矣”,这些具体而生动的“问题情境”都包含了极限的重要思想,由于历史原因,我们没有进一步研究探索,因而错失了发现微积分的良机。教师既要结合历史又要构造生动的“问题情境”将极限思想映射其中,学生们就会在生动的问题情境中体会极限思想。在结合情境体会极限思想时,我们会不约而同地与古代数学家再现,并构建极限概念。反过来,学生们也会按照极限概念去寻找生活屮的具体情境,将极限思想投射到具体情境中去,举一反三,使学生们牢牢把握极限思想。通过“问题情境”构建起來的数学概念,不仅可以使学生生动自然地完成知识目标,培养数学应用意识,而冃还可以引起他们的学习兴趣,培养他们主动探索的精神,进而完成课程的情感目标。下面我们再以“微分”教学中的“问题情境”来感知数学情境化教学的魅力。2“微分”教学中的“问题情境”一元函数微积分主要包括一元函数微分学和一元函数积分学。一元函数微分学主要寄寓于物理中变速立线运动的瞬时速度和儿何中平面曲线的切线斜率这两个问题情境。还原经典情境,让学生亲历知识形成、发展和重组过程,可以更好地培养学半主动探究知识的意识。我们知道,在学习导数概念时,当教师设置好引人入胜的变速直线运动学习情境时,学生就可以通过测量或者电脑模拟来观察平均速度逼近瞬时速度的过程,也就是路程函数的平均变化率趋近瞬时变化率的过程。教师的关键在于,通过引导,让学生自主地发现并建构这一极限过程。通过这个“经典情境”,学生不仅可以自主地建构导数概念的数学模型,还可以不由自主的体会极限的思想方法。从而促进学生形成运动变化的观点,为进一步促成这一哲学观点,教师乂可以通过数学史上切线定义的历史演变,引入平面曲线的切线斜率这一问题情境,帮助学生建构导数概念的数学模型。比较这两个问题情境的共性,抽象出导数概念,可以培养学生概括抽象问题的能力。如果关注这两个问题情境中的具体函数,就要解决导数的计算问题,帮助学生建构基本导数公式和导数的运算法则就成为自然的事情了。如果关注问题情境中函数增量的近似计算,引入微分概念的数学模型就很自然了。对一元函数来说,可微和可导是等价的,一元函数微分学的知识框架就基本建构起來了。通过数学史上的“问题情境”,还原数学概念的形成过程,既可以形象地帮助学生构建知识体系,乂可以培养学生的数学发现意识,还可以促进学生世界观、价值观的形成。“积分”教学中的“问题情境”会进一步体现这一观点。3“积分”教学中的“问题情境”一元函数积分学是一元函数微积分的另一个重要组成部分。一元函数积分学主要寄寓于平面图形的面积和变速直线运动的路程这两个问题情境。众所周知,不定积分实际上是导数和微分的逆运算,因此,一...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?