全等三角形的判定定理

全等三角形的判定定理1、边边边定理:有三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)例1、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC便是∠AOB的平分线.为什么?例2:已知,∠BAC(如图3),用直尺和圆规作∠BAC的平分线AD,说出该作法正确的理由。作法:1、A为圆心,适当长为半径作圆弧,与角的两边分别交于E、F点2、分别以E、F为圆心,大于EF为半径作圆弧交于角内一点D3、过点A、D作射线AD射线AD就是所求的∠BAC的平分线2、边角边定理:如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.这个事实可以简写为“边角边”或“SAS”.探究:SAS中的那个角不是夹角可以吗?由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?不一定全等,现在进一步来说明。我们可以通过画图回答,还可以通过实验回答。把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重合。适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(图13.2—7).图13.2—7中的△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等。这说明,有两边和其中一边的对角对应相等的两个三角形不一定全等。ACAB图3DEFCAB图4线段垂直平分线的定义?经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。垂直平分线,简称“中垂线”。线段中垂线的画法:3、角边角定理:如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等.这个事实可以简写为“角边角”或“ASA”4、角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).例3、如图,在△ABC中,ED垂直平分AB,1)若BD=10,则AD=。2)若∠A=50°,则∠ABD=。3)若AC=14,△BCD的周长为24,则BC=。例4、如图,已知AB⊥BD,ED⊥CD,且AB=CD,BC=DE,则AC与CE的位置关系?为什么?引伸:若将△CDE沿CB方向平移,且其余条件不变,则结论AC1⊥C2E还成立吗?请说明理由.例5、如图3,已知∠1=∠2,∠3=∠4,说明AD=BC的理由.解:∵_________,__________(已知)ABCDEAC1BDE(C2)ABC2DE()C1AC1C2B(D)EAC1BC2DE∴∠1+∠3=_________.即_______=_______.在_________和________中∴△_______≌△_______()∴AD=BC()例6、如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作AEÙ的垂线CF,垂足为F,过B作BD⊥BC交CF的延长线于点D.(1)试说明:AE=CD;(2)AC=12cm,求BD的长.例7、如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于E,试说明:AD+DE=BE.例8、如图,已知AB=AC,D、E两点分别在AB、AC上,且AD=AE,试说明:△BDF≌△CEF.【分析】在△BFD与△CFE中,有一组对角相等,由已知条件得,BD=CE,Ù只要证明它们的另一组对角∠C与∠B相等,就可证出结论,为了证∠C=∠B,可以由△ACDÙ与△ABE全等得到.【解】在△ABE与△ACD中∴△ABE≌△ACD,∴∠B=∠C∵AB=AC,AD=AE,∴BD=CE在△BDF与△CEF中∴△BDF≌△CEF.例9、如图,已知OA=OB,OC=OD,AD,BC相交于E,则图中全等三角形等有()ABOEDCA.2对B.3对C.4对D.5对(将这几对全等三角形一一证明)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?