领军高考数学一轮复习文理通用专题导数的概念及运算含解析

2020年领军高考数学一轮复习(文理通用)专题13导数的概念及运算最新考纲1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y=c(c为常数),y=x,y=x2,y=x3,y=,y=的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,(理)能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.基础知识融会贯通1.导数与导函数的概念(1)一般地,函数y=f(x)在x=x0处的瞬时变化率是lim=lim,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)=lim=lim.(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区(a,b)间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=exf′(x)=exf(x)=ax(a>0,a≠1)f′(x)=axlnaf(x)=lnxf′(x)=f(x)=logax(a>0,a≠1)f′(x)=4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)′=(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af(x)+bg(x)]′=af′(x)+bg′(x).3.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.重点难点突破【题型一】导数的计算【典型例题】求下列函数的导数(1)y=2x3﹣3x2﹣4;(2)y=xlnx;(3).【解答】解:(1)y′=6x2﹣6x;(2)y′=lnx+1;(3).【再练一题】已知函数f(x)=ex(2﹣lnx),f'(x)为f(x)的导函数,则f'(1)的值为.【解答】解:根据题意,函数f(x)=ex(2﹣lnx)=2ex﹣exlnx,其导数f′(x)=2ex﹣exlnx,则f′(1)=2e1﹣e1ln1e,故答案为:e.思维升华导数计算的技巧(1)求导之前,应对函数进行化简,然后求导,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.【题型二】导数的几何意义命题点1求切线方程【典型例题】32.已知曲线C:y=x3﹣3x2+2x(1)求曲线C上斜率最小的切线方程.(2)过原点引曲线C的切线,求切线方程及其对应的切点坐标.【解答】解:(1)y'=3x2﹣6x+2=3(x﹣1)2﹣1,所以,x=1时,y'有最小值﹣1,把x=1代入曲线方程得:y=0,所以切点坐标为(1,0),故所求切线的斜率为﹣1,其方程为:y=﹣x+1.(2)设切点坐标为M(x0,y0),则y0=x03﹣3x02+2x0,切线的斜率为3x02﹣6x0+2,故切线方程为y﹣y0=(3x02﹣6x0+2)(x﹣x0),因为切线过原点,所以有﹣y0=(3x02﹣6x0+2)(﹣x0),即:x03﹣3x02+2x0=x0(3x02﹣6x0+2),解之得:x0=0或.所以,切点坐标为M(0,0)或,相应的切线方程为:y=2x或即切线方程为:2x﹣y=0或x+4y=0.【再练一题】已知函数y=ex(1)求这个函数在x=e处的切线方程;(2)过原点作曲线y=ex的切线,求切线的方程.【解答】解:(1)函数y=ex,f(e)=ee,则切点坐标为(e,ee),求导y′=ex,则f′(e)=ee,即切线斜率为ee,则切线方程为y﹣ee=ee(x﹣e),化简得y=eex﹣ee+1+ee;(2)y=ex,y′=ex,设切点的坐标为(x0,ex0),则切线的斜率为f′(x0)=ex0,故切线方程为y﹣ex0=ex0(x﹣x0),又切线过原点(0,0),则﹣ex0=ex0(﹣x0),解得x0=1,y0=e,则切线方程为y=ex.命题点2求参数的值【典型例题】若过点P(﹣1,m)可以作三条直线与曲线C:y=xex相切,则m的取值范围是()A.(,+∞)B.()C.(0,+∞)D...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?