《数学奥林匹克专题讲座》第18讲 数

第18讲数学方法选讲(下)四、从反面考虑解数学题,需要正确的思路。对于很多数学问题,通常采用正面求解的思路,即从条件出发,求得结论。但是,如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决。例1某次数学测验一共出了10道题,评分方法如下:每答对一题得4分,不答题得0分,答错一题倒扣1分,每个考生预先给10分作为基础分。问:此次测验至多有多少种不同的分数?分析:最高的得分为50分,最低的得分为0分。但并不是从0分到50分都能得到。从正面考虑计算量较大,故我们从反面考虑,先计算有多少种分数达不到,然后排除达不到的分数就可以了。解:最高的得分为50分,最低的得分为0分。在从0分到50分这51个分数中,有49,48,47,44,43,39这6种分数是不能达到的,故此次测验不同的分数至多有51-6=45(种)。例2一支队伍的人数是5的倍数,且超过1000人。若按每排4人编队,则最后差3人;若按每排3人编队,则最后差2人;若按每排2人编队,则最后差1人。问:这支队伍至少有多少人?分析:从条件“若按每排4人编队,则最后差3人”的反面来考虑,可理解为“若按每排4人编队,则最后多1人”。同理,按3人、2人排队都可理解为多1人。即总人数被12除余1。这样一来,原题就化为:一个5的倍数大于1000,且它被12除余1。问:这个数最小是多少?解:是5的倍数且除以12余1的最小自然数是25。因为人数超过1000,[3,4,5]=60,所以最少有25+60×17=1045(人)。例3在八边形的8个顶点上是否可以分别记上数1,2,…,8,使得任意三个相邻的顶点上的数的和大于13?解:将八边形的8个顶点上的数依次记为a1,a2,a3,…,a8,则有S=a1+a2+a3+…+a8=1+2+3+…+8=36。假设任意3个相邻顶点上的数都大于13,因为顶点上的数都是整数,所以a1+a2+a3≥14;a2+a3+a4≥14;……a7+a8+a1≥14;a8+a1+a2≥14。将以上8个不等式相加,得3S≥112,从而S>37,这与S=36矛盾。故结论是否定的。例4有一个1000位的数,它由888个1和112个0组成,这个数是否可能是一个平方数?解:假设这个数为A,它是自然数a的平方。因为A的各位数字之和888是3的倍数,所以a也应是3的倍数。于是a的平方是9的倍数,但888不是9的倍数,这样就产生了矛盾,从而A不可能是平方数。五、从特殊情况考虑对于一个一般性的问题,如果觉得难以入手,那么我们可以先考虑它的某些特殊情况,从而获得解决的途径,使问题得以“突破”,这种方法称为特殊化。对问题的特殊情况进行研究,一方面是因为研究特殊情况比研究一般情况较为容易;另一方面是因为特殊的情况含有一般性,所以对特殊情况的研究常能揭示问题的结论或启发解决问题的思路,它是探索问题的一种重要方法。运用特殊化方法进行探索的过程有两个步骤,即先由一般到特殊,再由特殊到一般。通过第一步骤得到的信息,还要回到一般情况予以解答。例5如左下图,四边形ABCD和EFGH都是正方形,且边长均为2cm。又E点是正方形ABCD的中心,求两个正方形公共部分(图中阴影部分)的面积S。分析:我们先考虑正方形EFGH的特殊位置,即它的各边与正方形ABCD的各边对应平行的情况(见右上图)。此时,显然有得出答案后,这个问题还得回到一般情况下去解决,解决的方法是将一般情况变成特殊情况。解:自E向AB和AD分别作垂线EN和EM(右图),则有S=S△PME+S四边形AMEQ又S△PME=S△EQN,故S=S△EQN+S四边形AMEQ=S正方形AMEN例6是否在平面上存在这样的40条直线,它们共有365个交点?分析与解:先考虑一种特殊的图形:围棋盘。它有38条直线、361个交点。我们就从这种特殊的图形出发,然后进行局部的调整。先加上2条对角线,这样就有40条直线了,但交点仍然是361个。再将最右边的1条直线向右平移1段,正好增加了4个交点(见上图)。于是,我们就得到了有365个交点的40条直线。例7如右图,正方体的8个顶点处标注的数字为a,b,c,d,e,求(a+b+c+d)-(e+f+g+h)的值。分析:从这8个数都相等的特殊情况入手,它们满足题目条件,从而得所求值为0。这就启发我们去说明a+b+c+d=e+f+g+h。解:由已知得3a=b+e+d,3b=a+c+f,3c=b+d+g,3d=a+c+h,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?