高等数学历年试题集(含标准答案)精品文档年专升本插班考试2004试题《高等数学》分)(每小题4分,共20一、填空题12x???1y、函数。的定义域是1xxtan2lim?2、。3x?5x0x?dyx则),?cosy??ex(sinx、若3。dx112t?x??f()则dt(x)?f、若函数,。4221?tt?0rrrrrrrrrrrj2?i??3k和c?3j?k,b?i?jia?2,、设5rrrr?????b?cb?则a?。分)分,共20二、单项选择题(每小题41??II?,则dx)(6、若x?2311??C?x3?2ln3?2x?Cln(AB))(22??C?3?2lnxCx3?2?ln)(C(D)y,)1(则f0'?)x?f(x,y)?ln(,()7、设yx211,(C)2,(D))0,(B(A)212?x,y?x,y?)S=(8、曲线所围成的图形面积为S,则x1122??dx)xx)dx?((?)A)(B(xx11112222????dx?y?2?)dx)(2(dx)2??2)dx?x(((D))C(yx1111?n?的收敛区间是(9)、函数项级数n)2x?(1n?x?1及x?31?x?3?xx?11)(DB)C()A()(1x??f(x,y)dy?Idx)(、10I=变换积分分次序后有2x0.精品文档1xy1????dy,(xydx)fdxy)x,fdx(A))((B20xy0y1y1????dx)x,dxyf(dxf(xdx,y)DC())(20yy0分)9分,共36三、简单计算题(每题x)2x?)x?2?e((lim11、求极限3xsin0?x21yd0?sinyx?y?的二阶导数。y12、求由方程所确定的隐函数2dx2125?xdxxln、计算定积分13。022z??z?z?z,,),求,?zxln(xy。14、设2y??x??x?yx分)分,共24四、计算题(每题122OBx8,y??y0,x?,使得过,在曲边C15、由上,求一点所围成的曲边三角形OAB(如图所示)2xy?所围成的三角形面积最大。、之切线与OAAB此点所作2??y??x?2y20?,y?y2??xydxdy所围,、计算二重积分16D,共中是由直线以及曲线D成的平面区域。.精品文档2004年专升本插班考试《高等数学》参考答案一、填空题rr32kj??????x1?1,00?,xe?sin2ln5、、3、1、4、245二、单项选择题BC10、、D8、B9、6、A7三、简单计算题xx?1?e(x?2e)?lim11、解:原式23sinxcosx0?xxx11xxee?lim?lim?lim?1??23226?sinx06xx36sincossin6sinxcos?x?30?xxx?0?012、解:把y看成x的函数并对和方程关于x求导,得111?y'(x)?cosy?y'(x)?0?y'(x)?再一次求导,得121?cosy22))(x(y'1siny?112?y''(x)??0x))?''(x)?siny?(y'(??y''(x)cosy?y1222y?cos121sinyx?y???11233)?ycosy)cos((1?1220152t6t2??dt?xtxelnexdx令?、解:130??11110006t66t2t26t02???e??tdt(t)e)?te??e?dtd(??6663??????111111000060tt6t6t66t????e?edt?edt?te??td(e)??????10818181081818???????z1?z1x?ln(xy)?x??y?ln(xy)?1?x??x?、解:14?xxy?yxyy22z??z?x1??z??z?y1()?(ln(xy)?1)???()?(ln(xy)?1)???2?x?x?x?xxyx?x?y?y?x?yxyy四、计算题22x,其中0?x?8x)?2x)?y(x?x?y'(c的切线斜率为15、解:于是过点0022?2x(t?x)S?2xt?xS?x?切线方程为:,即00000.精品文档x208??0yx和()x?x,0P)和Q(8,16分别交于点此切线与002x1122080?x?),?x)x(16?xxh()?(8?))(16x?xh(?所围三角形面积h为:即00000004221112)?3x(16?x)(?)h'(x?(16?x)x16(16?x)?h对求导,得000000442160)?h'(x)x?舍去8,因0x??,x?16(令,得0000332128?16)h(0h?(8)h'(x)?0,h(8)?128,h()??又027325616,?)作切线,所围三角形面积最大。当过点(93、解:16222y?y2?2?????ydxdydyy?)dy?y(2?2yydx?020?D22222???dy?2ydy?4???2ydyyyy2y?y000????0,时,?y?????222???dyyy2y?sin?y?1????,则当令下面计算??220??,?2时,y??2??222?????)1?1?sinsind2yy?ydy?sin(1?()2于是?0?2???222????????????dcossin?(1?cosdd?sincos)222??????222????2?cos12??????0d???cosd22??22??22????4?ydxdy?2D.精品文档年广东省普通高等学校本科插班生招生考试2005《高等数学》试题分)3分,共15一、单项选择题(本大题共5小题,每小题的是1、下列等式中,不成立...?1)sin(x?limlim1sin??1x、BA、??xx??x?x?21xsinlimlim0sin?x1?、C、Dxx0x?0x?)xf(2x??????,c?f(ex)dx?dx)(xf=)上的连续函数,且是在(,则2、设x1122xxxxe?2ce?2Ce?e??CB、、C、、DA22)(ax()?fflim?xcosf(x)?3、设,则ax?a?xxcosxxasinsinsinB、D、C、A、--1]上满足罗尔中值定理条件的是4、下列函数中,在闭区间[-1,3?22x??x(x)ff(x)x?1?)f(x||f(x)?x、B、、CD、A?ux)?(xyu=5、已知,则?y2x?12x?12)xyyln(x(xy)(xy)ln(xxy)x、、、A、DCB二、填空题(...