第2章2.3第2课时一元二次不等式的应用

第2课时一元二次不等式的应用学习目标核心素养1.掌握一元二次不等式的实际应用(重点).2.理解三个“二次”之间的关系.3.会解一元二次不等式中的恒成立问题(难点).1.通过分式不等式的解法及不等式的恒成立问题的学习,培养数学运算素养.2.借助一元二次不等式的应用培养数学建模素养.1.分式不等式的解法主导思想:化分式不等式为整式不等式类型同解不等式>0(<0)(其中a,b,c,d为常数)法一:或法二:(ax+b)(cx+d)>0(<0)≥0(≤0)法一:或法二:>k(其中k为非零实数)先移项通分转化为上述两种形式思考1:>0与(x-3)(x+2)>0等价吗?将>0变形为(x-3)(x+2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.2.(1)不等式的解集为R(或恒成立)的条件不等式ax2+bx+c>0ax2+bx+c<0a=0b=0,c>0b=0,c<0a≠0(2)有关不等式恒成立求参数的取值范围的方法设二次函数y=ax2+bx+c若ax2+bx+c≤k恒成立⇔ymax≤k若ax2+bx+c≥k恒成立⇔ymin≥k3.从实际问题中抽象出一元二次不等式模型的步骤(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).(3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.1.若集合A={x|-1≤2x+1≤3},B=,则A∩B等于()A.{x|-1≤x<0}B.{x|0<x≤1}C.{x|0≤x<2}D.{x|0≤x≤1}B[ A={x|-1≤x≤1},B={x|0<x≤2},∴A∩B={x|0<x≤1}.]2.不等式≥5的解集是________.[原不等式⇔≥⇔≤0⇔解得0<x≤.]3.不等式x2+ax+4<0的解集不是空集,则实数a的取值范围是________.a>4或a<-4[ x2+ax+4<0的解集不是空集,即不等式x2+ax+4<0有解,∴Δ=a2-4×1×4>0,解得,a>4或a<-4.]4.在如图所示的锐角三角形空地中,欲建一个面积不小于300m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是________.{x|10≤x≤30}[设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,xy≥300,整理得y+x=40,将y=40-x代入xy≥300,整理得x2-40x+300≤0,解得10≤x≤30.]分式不等式的解法【例1】解下列不等式:(1)<0;(2)≤1.[解](1)<0⇔(x-3)(x+2)<0⇔-2<x<3,∴原不等式的解集为{x|-2<x<3}.(2) ≤1,∴-1≤0,∴≤0,即≥0.此不等式等价于(x-4)≥0且x-≠0,解得x<或x≥4,∴原不等式的解集为.1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.1.解下列不等式:(1)≥0;(2)<3.[解](1)根据商的符号法则,不等式≥0可转化成不等式组解这个不等式组,可得x≤-1或x>3.即知原不等式的解集为{x|x≤-1或x>3}.(2)不等式<3可改写为-3<0,即<0.可将这个不等式转化成2(x-1)(x+1)<0,解得-1<x<1.所以,原不等式的解集为{x|-1<x<1}.一元二次不等式的应用【例2】国家原计划以2400元/吨的价格收购某种农产品m吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x个百分点,收购量能增加2x个百分点.试确定x的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.[思路点拨]将文字语言转换成数学语言:“税率降低x个百分点”即调节后税率为(8-x)%;“收购量能增加2x个百分点”,此时总收购量为m(1+2x%)吨,“原计划的78%”即为2400m×8%×78%.[解]设税率调低后“税收总收入”为y元.y=2400m(1+2x%)·(8-x)%=-m(x2+42x-400)(0<x≤8).依题意,得y≥2400m×8%×78%,即-m(x2+42x-400)≥2400m×8%×78%,整理,得x2+42x-88≤0,解得-44≤x≤2.根据x的实际意义,知x的范围为0<x≤2.求解一元二次不...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?