领军高考数学一轮复习文理通用专题05函数的单调性与最值含解析

2020年领军高考数学一轮复习(文理通用)专题05函数的单调性与最值最新考纲1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.基础知识融会贯通1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【知识拓展】函数单调性的常用结论(1)对∀x1,x2∈D(x1≠x2),>0⇔f(x)在D上是增函数,<0⇔f(x)在D上是减函数.(2)对勾函数y=x+(a>0)的增区间为(-∞,-]和[,+∞),减区间为[-,0)和(0,].(3)在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.重点难点突破【题型一】确定函数的单调性(区间)命题点1给出具体解析式的函数的单调性【典型例题】下列函数中,值域为R且在区间(0,+∞)上单调递增的是()A.y=x2+2xB.y=2x+1C.y=x3+1D.y=(x﹣1)|x|【解答】解:根据题意,依次分析选项:对于A,y=x2+2x=(x+1)2﹣1,其值域为[﹣1,+∞),不符合题意;对于B,y=2x+1,其值域为(0,+∞),不符合题意;对于C,y=x3+1,值域为R且在区间(0,+∞)上单调递增,符合题意;对于D,y=(x﹣1)|x|,在区间(0,1)上为减函数,不符合题意;故选:C.【再练一题】已知函数f(x)=ln,则()A.f(x)是奇函数,且在(﹣∞,+∞)上单调递增B.f(x)是奇函数,且在(﹣∞,+∞)上单调递减C.f(x)是偶函数,且在(0,+∞)上单调递增D.f(x)是偶函数,且在(0,+∞)上单调递减【解答】解:根据题意,函数f(x)=ln,其定义域为R,有f(﹣x)=lnlnf(x),则函数f(x)为偶函数,设t,y=lnt,对于t,则导数t′,当x>0时,t′>0,即函数t在区间(0,+∞)上为增函数,又由y=lnt在区间(0,+∞)上为增函数,则函数f(x)=ln在0,+∞)上为增函数,故选:C.命题点2解析式含参数的函数的单调性【典型例题】定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k的取值范围是()A.(﹣∞,﹣2]B.[2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【解答】解:根据题意,函数f(x)=﹣x3+m,其定义域为R,则R上f(x)为减函数,g(x)=f(x)+x3+x2﹣kx=x2﹣kx+m在[﹣1,1]上为减函数,必有x1,解可得k≥2,即k的取值范围为[2,+∞);故选:B.【再练一题】已知函数f(x)(a>0且a≠1)在R上单调递减,则a的取值范围是()A.[,1)B.(0,]C.[,]D.(0,]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满足0<a<1,根据二次函数开口向上,在(单调递减,可得,即,解得:.且[x2+(4a﹣3)x+3a]min≥[loga(x+1)+1]max故而得:3a≥1,解得:a.∴a的取值范围是[,],故选:C.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.【题型二】函数的最值【典型例题】若函数f(x),则函数f(x)的值域是()A.(﹣∞,2)B.(﹣∞,2]C.[0,+∞)D.(﹣∞,0)∪(0,2)【解答】解:当x<1时,0<2x<2,当x≥1时,f(x)=﹣log2x≤﹣log21=0,综上f(x)<2,即函数的值域为(﹣∞,2),故选:A.【再练一题】函数f(x)=ex﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1]B.C.D.[0,e﹣1]【解答】解:函数的导数f′(x)=ex﹣1,由f′(x)>0得ex﹣1>0,即ex>1,得0<x≤1,此时函数递增,由f′(x)<0得ex﹣1<0,即ex<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得极小值同时也是最小值f(0)=1, f(1)=e﹣1,f(﹣1)1<e﹣1,∴函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?