用于约束多目标优化问题的双群体差分进化算法

用于约束多目标优化问题的双群体差分进化算法孟红云1张小华2刘三阳1(1.西安电子科技大学应用数学系,西安,710071;2.西安电子科技大学智能信息处理研究所,西安,710071)摘要:首先给出一种改进的差分进化算法,然后提出一种基于双群体搜索机制的求解约束多目标优化问题的差分进化算法.该算法同时使用两个群体,其中一个用于保存搜索过程中找到的可行解,另一个用于记录在搜索过程中得到的部分具有某些优良特性的不可行解,避免了构造罚函数和直接删除不可行解.此外,将本文算法、NSGA-Ⅱ和SPEA的时间复杂度进行比较表明,NSGA-Ⅱ最优,本文算法与SPEA相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势.关键字:差分进化算法;约束优化问题;多目标优化问题;:TP181引言达尔文的自然选择机理和个体的学习能力推动进化算法的出现和发展,用进化算法求解优化问题已成为一个研究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结为求解一个带有约束条件的函数优化问题,因此研究基于进化算法求解约束优化问题是非常有必要的.不失一般性,以最小化问题为例,约束优化问题(ConstrainedOptimizationProblem,)可定义如下:(1)其中为目标函数,称为约束条件,称为维决策向量.将满足所有约束条件的解空间称为(1)的可行域.特别的,当时,(1)为单目标优化问题;当时,(1)为多目标优化问题.为第个不等式约束,是第个等式约束.另一方面,对于等式约束可通过容许误差(也称容忍度)将它转化为两个不等式约束:(2)故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果使得不等式约束,则称约束在处是积极的.在搜索空间中,满足约束条件的决策变量称为可行解,否则称为不可行解.定义1(全局最优解)是的全局最优解,是指且不劣于可行域内任意解所对应的目标函数,表示为.对于单目标优化问题,等价为,而对于多目标优化问题是指不存在,使得Pareto优于.目前,进化算法用于无约束优化问题的文献居多,与之比较,对约束优化问题的研究相对较少[4-6]。文[7]对当前基于进化算法的各种约束处理方法进行了较为详细的综述.对于约束优化问题的约束处理方法基本上分为两类:基于罚函数的约束处理技术和基于多目标优化技术的约束处理技术.由于罚函数法在使用中不需要约束函数和目标函数的解析性质因此经常被应用于约束优化问题,但该类方法对罚因子有很强的依赖性,需要根据具体问题平衡罚函数与目标函数.为了避免复杂罚函数的构造,Verdegay等[8]将进化算法中的竞争选择用于约束处理,并在比较两个解的性能时提出了三个准则,但他的第三个准则—可行解优于不可行解—这一准则合理性不强.然而该文的这一准则却为进化算法求解约束优化问题提供了新思路,获得了良好效果.因为在现实中存在一大类约束优化问题,其最优解位于约束边界上或附近,对于这类问题,在最优解附近的不可行解的适应值很可能优于位于可行域内部的大部分可行解的适应值,因此无论从适应值本身还是从最优解的相对位置考虑,这样的不可行解对找到最优解都是很有帮助的,故如何有效利用搜索过程中的部分具有较好性质的不可行解是解决此类问题的难点之一.基于以上考虑,本文拟给出一种求解约束多目标优化问题的基于双群体机制的差分进化算法,并对文中算法的时间复杂度与NSGA-Ⅱ[9]和SPEA[10]进行比较,最后用实验仿真说明文中算法的可行性及有效性.2用于约束优化的双群体差分进化算法2.1差分进化算法差分进化算法是一类简单而有效的进化算法,已被成功应用于求解无约束单目标和多目标优化问题[11-14].该算法在整个运行过程中保持群体的规模不变,它也有类似于遗传算法的变异、交叉和选择等操作,其中变异操作定义如下:(3)其中,为从进化群体中随机选取的互不相同的三个个体,为位于区间中的参数.(3)式表示从种群中随机取出的两个个体的差,经参数放大或缩小后被加到第三个个体上,以构成新的个体.为了增加群体的多样性,交叉操作被引入差分进化算法,具体操作如下:针对父代个体的每一分量,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?