(一)填空题1.___________________sinlim0xxxx.答案:00,0,1)(2xkxxxf,在x0处连续,则k________.答案:1xy在)1,1(的切线方程是.答案:2121xy52)1(2xxxf,则____________()fx.答案:x2xxfxsin(),则__________2)(πf.答案:2π(二)单项选择题1.函数212xxxy的连续区间是(D)A.),1()1,(B.),2(,2)(C.),1()1,2(,2)(D.),2(,2)(或),1()1,(2.下列极限计算正确的是(B)A.1lim0xxxB.1lim0xxxC.1sin1lim0xxxD.1limsinxxx3.设,则(B).A.B.C.D.4.若函数f(x)在点x0处可导,则(B)是错误的.A.函数f(x)在点x0处有定义B.Axfxx()lim0,但)(0xfAC.函数f(x)在点x0处连续D.函数f(x)在点x0处可微x0时,下列变量是无穷小量的是(C).A.x2B.xxsinC.)ln(1xD.xcos(三)解答题1.计算极限(1)21123lim221xxxx2112lim)11)((2)1)((lim11xxxxxxxx原式(2)218665lim222xxxxx原式=-2)(x-4)(x(x-2)(x-3)lim2x2143lim2xxx(3)2111lim0xxx原式=)11()11)(1(1lim0xxxxx=111lim0xx=21(4)3142353lim22xxxxx原式=22433531xxxx=31(5)535sinsin3lim0xxx原式=xxxxx55sin33sin5lim30=53(6)42)sin(4lim22xxx原式=22)sin(2lim2xxxx=22)sin(lim2)(lim22xxxxx=42.设函数0sin0,0,1sin)(xxxxaxbxxxf,问:(1)当a,b为何值时,f(x)在x0处有极限存在?(2)当a,b为何值时,f(x)在x0处连续.解:(1)1()lim,()lim00fxbxfxx当1f(0)limf(x)1x0时,有ba(2).1f(0)limf(x)1bax0有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分:(1)2222log2xxyx,求y答案:ln212ln22xxyx(2)dcxbaxy,求y答案:22)()()()(dcxbcaddcxbcaxdacxy(3)531xy,求y答案:235)2(33xy(4)xxxye,求y答案:)(21xxxeexy=xxxeex21(5)bxyeaxsin,求yd答案: )cos(sincossin)(sin)(sin(bxbbxebxbebxaebxebxeyaxaxaxaxax∴bxdxbbxaedyax)cos(sin(6)xxyx1e,求yd答案: xxeyx23112∴dxxexdyx)123(12(7)e2cosxxy,求yd答案: )()(sin22xexxyx=222sinxxexx∴dxxexxdyx)22sin(2(8)nxxynsinsin,求y答案:nxnxxnyncoscossin1(9))1ln(x2xy,求y答案:)1(1122xxxxy=)11(1122xxxx=2221111xxxxx=211x(10)xxxyx21232cot1,求y答案:531cos261211cos6121ln2sin1212)(ln2(cos1)2xxxxxxxyxxy是x的隐函数,试求y或yd(1)方程两边对x求导:0322xyyyyx32)(2xyxyy所以dxxyxydy232(2)方程两边对x求导:4)())(1cos(xyyeyyxxyxyxyyeyxyxeyx)cos(4])[cos(所以xyxyxeyxyeyxy)cos()cos(45.求下列函数的二阶导数:(1))1ln(x2y,求y答案:(1)212xxy222222)1(22)1(22)1(2xxxxxxy(2)212321212121)(xxxxy23254143xxy14143)1(y作业(二)(一)填空题cxxxfx22)d(,则___________________()xf.答案:22ln2x2.xxd(sin)________.答案:xcsin3.若cFxxfx())d(,则xxxf)d1(2.答案:cxF)1(212___________)dln(1dde12xxx.答案:05.若ttxPxd11)(02,则__________()Px.答案:211x(二)单项选择题1.下列函数中,(D)是xsinx2的原函数.A.21cosx2B.2cosx2C.-2cosx2D.-21cosx22.下列等式成立的是(C).A.d(cos)sindxxxB.d(1)lndxxxC.l...