第七章习题7-11.略.2.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.xoy面的对称点是(a,b,-c);1)点(a,b,c)关于解:(xoz面的对称点是(a,-b,c);关于yoz面的对称点是(-a,b,c关于);(2)点(a,b,c)关于x轴的对称点是(a,-b,-c);关于y轴的对称点是(-a,b,-c);关于z轴的对称点是(-a,-b,c);(3)点(a,b,c)关于原点的对称点是(-a,-b,-c);3.自点P(x,y,z)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.0000P(x,y,z)(x,y,0)xoy;作解:自点面的垂线,垂足坐标是000000(x,0,z);xoz面的垂线,垂足是作00(0,y,z);yoz面的垂线,垂足是作00P(x,y,z)(x,0,0);x自点作轴的垂线,垂线是00000(0,y,0);y作轴的垂线,垂足是0(0,0,z).z作轴的垂线,垂足是04.求点M(4,-3,5)到各坐标轴间的距离.M(4,0,0)M(0,?3,0),,M分别作x轴,y轴,z轴的垂线,垂足分别为解:自点21M(0,0,5)M(4,?3,5)到x轴,y,则点轴,z轴的距离分别为:3222?34.(5?0)(?3?0)?d|MM|?(4?4)??1x222?41.(5?3?3)0)(4?|MM|??0)??(?d2y222?5.?0)5)?(5?(4?0)(??3?|d?|MM3zOz面上,求与三个已知点A(3,1,2),B(4,-2,2)在5.y和C(0,5,1)等距离的点.P(0,b,c)|PA|?|PB|?|PC|,解:设所求点则2222221)?c?5)?(?(b?(b(?1)?c?2)16?(?2)?c?2)(b?9即538385??0,?,?.??b?,?c故所求点的坐标为解得,??3333??16.试证明以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.222?36?4?91)??(6?9)?|AB|?(104)7?(?1?证:222?1)?(3?9)??4?|AC?|4?)9?(43(2?67222?1)?(3?6)??6140?)?(4?25972(|BC?|2?222|BC?||?|AC||AB||AC|AB|??,且?ABC是等腰直角三角形所以.习题7-2AB?aAD?b,M为对角线的交点,试用向量,a1.在平行四边形ABCD内,设和bMA,MB,MCMD.表示向量和,bAD??a,BC?DC?AB解:(如图)b??a?AB?BCACab?BA?AD?BD?7-1图11?AM?MA????(a?b)AC于是:22111)?b)??BD??(b?a?(aMB??BM22211)bMC?AC?(a?2211)MD?BDab??(222.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行四边形..?MBMC,DMAM?证:(如上题图),依题意有.DCDM??AM?MB?MCAB?于是ABCD.故是平行四边形a的终点坐标.,-2),求向量3i=-2j+3k的始点为(1,.已知向量3az,x,y则),a的终点坐标为(设解:,kz?2)j(1)i?y?3)?(?(a?x,3k?2ia??j从而有而22?x?1?1x????1?yy?3??2解得????1?z?2?3z??.)的终点坐标为(2,1,1所以,向量a.a-3b+4c4.已知向量a=(3,5,-1),b=(2,2,2),c=(4,-1,-3),求23)?3(2,2,2)?4(4,?1,?3b?4c?2(3,5,?1)?2a解:12)?(16,?4,???(6,10,?2)(6,6,6)20)?(16,0,?MMMMMM平,求向量及与,并求(1,-1,0)5.已知两点M(0,1,2)和M21212211行的单位向量.2)?(1,?2,?i?2j?2k??MM(1?0)i?(?1?1)j?(0?2)k:解212223??2)?1?(?2)?(|MM|21MM1122??2??(1,?2,e???2)??,?,?MM与平行的单位向量??213333|MM|??2221221????,,??,,?MM平行的单位向量为即与.或????21333333????7-3习题?ba?a,b)(,求(1)a·a,(2)a·b,(3)(2a+3b)·(3a-b1.已知)=2,.=1,3π2a?a?|a|?4a?b?|a|?|b|cos(a,b)?1?2?1?cos)2解:(1)(3(3)(a2?b3?)a(?3b?)a(?2b?3a)?3a?(2b?3b?)a?a6?b?a9?a?2b?b?b?6a?a?7a?b?3b?b?6?4?71??31??282.设a=3i-j-2k,b=i+2j-k,求(1)a·b及a×b;(2)(-2a)·3b及a×2b;(3)(a+b)×(a-b).a?b?(3,?1,?2)?(1,2,?1)?3?1?(?1)?2?(?2)?(?1)?3(1)解:ijk?1?2?5i?3a?b?j?7k12?1(?2a)?3b??6a?b??18(2)i?j?7k)?1i0?a?2b?2(a?b)?2(52j?1k3b?a?b?b)?a?a?b?a?aa?b)?(a?b)?a?(?b)?(?b?(3)(a?b)(k?2j?14?j?7k)??10i??2(a?b)??2(5ic·a.·,计算a·b+bc+3.已知a,b,c为单位向量,且满足a+b+c=0)?b?ca?b?c)?(a0?(解:cb?c?c?c?a?c??b?a?c?b?a?b?b?b?a?a?a?222)ac?(?b?ba?|?|bc|?c|?|?2a?|)ac??b?b?c??3?2a(3????b?c?caa?b.故2Ob|.k,且|a|=2在x|y坐标面上求向量a,使其垂直于向量b=4i-3j+54.,0),ya?(x0b?a?ba?,由解:设向量得0y?4x?3,即2222200y?x?2x?y?216?9?25?10|b2|a|?|.由,得即??03y?4x?26x?x?62????或解方程组得???22200?x?y22y??8y?8?????2,0)62,2,8(62,0)?8(?a.为所以所求向量或.的面积S(2C,4,7)为顶点的△ABC...