K均值聚类分析

1案例题目:选取一组点(三维或二维),在空间内绘制出来,之后根据K均值聚类,把这组点分为n类。(0,0,0),(4,4,4),(-4,4,-4),协方差此例中选取的三维空间内的点由均值分别为300000300030030030的150个由,mvnrnd,函数随机生成。分别为3033000002原理运用与解析:2.1聚类分析的基本思想聚类分析是根据“物以类聚”的道理,对样本或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样本,要求能合理地按各自的特性进行合理的分类。对于所选定的属性或特征,每组内的模式都是相似的,而与其他组的模式差别大。一类主要方法是根据各个待分类模式的属性或特征相似程度进行分类,相似的归为一类,由此将待分类的模式集分成若干个互不重叠的子集,另一类主要方法是定义适当的准则函数运用有关的数学工具进行分类。由于在分类中不需要用训练样本进行学习和训练,故此类方法称为无监督分类。聚类的目的是使得不同类别的个体之间的差别尽可能的大,而同类别的个体之间的差别尽可能的小。聚类又被称为非监督分类,因为和分类学习相比,分类学习的对象或例子有类别标记,而要聚类的例子没有标记,需要由聚类分析算法来自动确定,即把所有样本作为未知样本进行聚类。因此,分类问题和聚类问题精品资料根本不同点为:在分类问题中,知道训练样本例的分类属性值,而在聚类问题中,需要在训练样例中找到这个分类属性值。聚类分析的基本思想是认为研究的样本或变量之间存在着程度不同的相似性(亲疏关系)。研究样本或变量的亲疏程度的数量指标有两种:一种叫相似系数,性质越接近的样本或变量,它们的相似系数越接近1或-1,而彼此无关的变量或样本它们的相似系数越接近0,相似的为一类,不相似的为不同类。另一种叫距离,它是将每一个样本看做p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。2.2动态聚类法思想动态聚类方法、亦称逐步聚类法.一类聚类法.属于大样本聚类法。具体作法是:先粗略地进行预分类,然后再逐步调整,直到把类分得比较合理为止。这种分类方法较之系统聚类法,具有计算量较小、占用计算机存贮单元少、方法简单等优点,所以更适用于大样本的聚类分析,是一种普遍被采用的方法。这种方法具有以下三个要素:(1)选定某种距离度量作为样本间的相似性度量;(2)确定某种可以评价聚类结果质量的准则函数;(3)给定某个初始分类,然后用迭代算法找出使得准则函数取极值的最好聚类结果。动态聚类法在计算迭代过程中,类心会随着迭代次数进行修正和改变。动态聚类法的基本步骤:精品资料(1)选取初始聚类中心及有关参数,进行初始聚类。(2)计算模式和聚类的距离,调整模式的类别。(3)计算各聚类的参数,删除,合并或分裂一些聚类。(4)从初始聚类开始,运用迭代算法动态地改变模式的类别和聚类的中心,使准则函数取极值或设定的参数达到设计要求时停止。2.3K-均值聚类算法的思想K-均值算法是一种基于划分的聚类算法,它通过不断的迭代过程来进行聚类,当算法收敛到一个结束条件时就终止迭代过程,输出聚类结果。由于其算法思想简便,又容易实现,因此K一均值算法己成为一种目前最常用的聚类算法之一。{x,x,...,划分的集合)均值算法解决的是将含有n个数据点(实体K-}xX21n为k个类的问题,其中,算法首先随机选取k个数据点作为kC1,2,...,kjj个类的初始类中心,集合中每个数据点被划分到与其距离最近的类中心所在的类中,形成了k个聚类的初始分布。对分配完的每一个类计算新的类中心,然后继续进行数据分配的过程,这样迭代若干次之后,若类中心不再发生变化,则说明数据对象全部分配到自己所在的类中,证明函数收敛。在每一次的迭代过程中都要对全体数据点的分配进行调整,然后重新计算类中心,进入下一次迭代过程,若在某一次迭代过程中,所有数据点的位置没有变化,相应的类中心也没有变化,此时标志着聚类准则函数已经收敛,算法结束。通常采用的目标函数形式为平方误差准则函数:K2cxEiii1xcii其中,为数据对象,表示类的质心,E则表示数据集中所有对象的Cxciii精品资料误差平方和。该目标函数采用欧氏距离。K-均值聚类...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?