图同构问题的决策神经网络模型

图同构问题的决策神经网络模型南晋华,齐欢(华中科技大学控制科学与工程系武汉430074)摘要图的同构问题是研究两个图之间相互关系范畴。这对图表面上似乎不同,但本质上完全相同。由于图的同构问题在以系统建模、电路布线等众多问题中有直接的应用,因而,吸引了不少的学者从事这方面的研究。本文意在建立一种局域连接的、模拟人脑决策思维模式的、可用于优化信息处理的神经网络模型。文中在过去建立求解图的同构问题人工神经网络模型的基础上,拟应用人脑决策局域化的思想,提出了一种新的用于图的同构问题的人工神经网络模型。该模型中增加了一个自然的约束条件,加快了运算速度。关键词图;同构;决策;神经网络TP301Thedecision-makingneuralnetworksmodelforsolvingthegraphisomorphismproblemNAN激n-Hua1)QIHuan1)1)(DepartmentofControlScienceandEngineering,HuazhongUniversityofScienceandTechnology,Wuhan430074)AbstractThegraphisomorphismproblemistostudytherelationshipbetweentwographswhichseemtobedifferent,butessentiallyidentical.Thisproblemcanbewidelyusedinthesystemmodeling,circuitwiringandmanyotherissues.Therefore,thispaperisaimedtoestablishakindofneuralnetworksmodelthatareoflocal-connection,simulationhuman’sdecision-makingthinking,andalsocanbeappliedtosolvetheoptimizationforinformation.Onthisbasis,weuseanaturalconstraintinthismodelinordertospeeduptheoperations,andthenanewartificialneuralnetworkmodelisproposedtosolvethegraphisomorphismproblem.KeywordsGraph;Isomorphism;Decision-making;Neuralnetworksmodel1引言图的同构问题不仅是数学,特别是图论自身学科研究中的一个核心内容,而且具有良好的应用背景,在工程技术领域,特别是大系统建模、电路设计、机械设计、模式识别以及系统建模中有着广泛的应用。对于系统建模,如果能够证明需建模型与已知模型同构,则可以节省大量人力物力财力。多数学者认为图的同构判定问题属于NP-完全问题。但至今没有定论,即它究竟是问题还是NP问题?目前关于图的同构问题的判定性算法不少,有诸如经典判定算法[1-8]、对在实际工程中有着广泛应用的图的拟同构问题算法[9-12]、进化计算方法[13]、人工神经网络求解算法[14-18]以及最新的DNA计算模型[19-20]等。在经典的图同构算法中,在此主要介绍两种算法,一种是所谓的矢量列表法,另一种是回溯算法。研究图的同构问题,一个重要的环节是如何表示图的信息。在这个问题上,Comeil与Hffman等人曾引入“模块”这一概念来表示各个顶点及其邻接顶点信息。在此基础上Riaz提出一种有效的判定图同构问题的算法-矢量列表法,即把各顶点所代表的信息用模块表示,所有模块组合在一起构成矢量列表。设计算法依次比较各模块,最终得到同构信息。并在此基础上建立了判定图同构的矢量列表法。图同构的回溯算法是一种利用K-算子表示图结构,然后通过比对序列求解图同构映射的方法。K-算子这一概念最初由Kride等人提出,文献[11-12]对这一算法进行深入的探讨改进,并对这一方法进行了系统的论述,并给出了适合计算机求解的算法。虽然通过仿真结果证明了这种回溯算法的可行性,但是要严格地给出时间复杂度估计不是很容易的事情,尽管如此,这种试图从图的结构上来判定同构性的思想无疑是值得借鉴的,它通过引入算子,把给定图表示成字符串的形式,然后通过回溯模式识别,逐步求得可能的同构序列,最终得到两图是否同构。遗传算法由JohnHolland等人于20世纪60年代末提出,模拟生化机制进行优化计算[21]。图的同构问题稍加扩充,引入成具有一定应用背景的所谓的拟同构的概念。当两个图相近程度达到要求误差范围之内时称两个图为拟同构图的拟同构的一个很重要的应用就是在模式识别中,通常把事物的特征及其相互作用表示成赋权图。该算法把一个图同构的判定问题分解在GA中进行求解。通过引入初始匹配,进化速度加快,用顶点映射来代替常规算法中的行列交换,鉴于GA求解随机搜索问题的有效性,在图的拟同构判定中,该算法也就显得十分有效。DNA计算是一...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?