数学高二同步系列课堂讲义北师大选修4-4试题第一章坐标系1.1.1含答案

第一章DIYIZHANG坐标系§1平面直角坐标系1.1平面直角坐标系与曲线方程课后篇巩固探究A组1.已知平行四边形ABCD的三个顶点A,B,C的坐标分别为(-1,2),(3,0),(5,1),则点D的坐标是()A.(9,-1)B.(-3,1)C.(1,3)D.(2,2)解析:设点D的坐标为(x,y).则{-1+5=3+x,2+1=0+y,解得{x=1,y=3.故点D的坐标为(1,3).答案:C2.已知△ABC中,A(4,-3),B(5,-2),重心G(2,-1),则点C的坐标为()A.(-3,2)B.(3,-2)C.(2,-3)D.(-2,3)解析:设点C(x,y),线段AB的中点D(92,-52).依题意得⃗GC=2⃗DG,即(x-2,y+1)=2(2-92,-1+52).得{x-2=-5,y+1=3,解得{x=-3,y=2,故C(-3,2)为所求.答案:A3.方程(x2-4)2+(y2-4)2=0表示的图形是()A.两条直线B.四条直线C.两个点D.四个点解析:由方程得{x2-4=0,y2-4=0,解得{x=2,y=2或{x=-2,y=-2或{x=-2,y=2或{x=2,y=-2,故选D.答案:D4.将圆x2+y2-2x-4y+1=0平分的直线是()A.x+y-1=0B.x+y+3=0C.x-y+1=0D.x-y+3=0解析:因为(x-1)2+(y-2)2=4,所以圆心是(1,2),将圆心坐标代入各选项验证知选C.答案:C5.平面上有三个点A(-2,y),B(0,y2),C(x,y),若⃗AB⊥⃗BC,则动点C的轨迹方程是.解析:⃗AB=(0,y2)-(-2,y)=(2,-y2),⃗BC=(x,y)-(0,y2)=(x,y2), ⃗AB⊥⃗BC,∴⃗AB·⃗BC=0.∴(2,-y2)·(x,y2)=0,即y2=8x.∴动点C的轨迹方程为y2=8x.答案:y2=8x6.在平面直角坐标系中,已知点A为平面内的一个动点,点B的坐标为(2,0).若⃗OA·⃗BA=|⃗OB|(O为坐标原点),则动点A的轨迹为.解析:设动点A的坐标为(x,y),则⃗OA=(x,y),⃗BA=(x-2,y),|⃗OB|=❑√22+0=2.代入已知条件得x(x-2)+y2=2,即(x-1)2+y2=3,它表示一个圆.答案:圆7.已知真命题:若点A为☉O内一定点,点B为☉O上一动点,线段AB的垂直平分线交直线OB于点P,则点P的轨迹是以点O,A为焦点,OB长为长轴长的椭圆.类比此命题,写出另一个真命题:若点A为☉O外一定点,点B为☉O上一动点,线段AB的垂直平分线交直线OB于点P,则点P的轨迹是.解析:如图,连接AP,因为P是线段AB的垂直平分线上一点,所以|PA|=|PB|.因此||PA|-|PO||=||PB|-|PO||=|OB|=R=定值,其中R为☉O的半径.由于点A在圆外,故||PA|-|PO||=|OB|=R<|OA|,故动点P的轨迹是以O,A为焦点,OB为实轴长的双曲线.答案:以点O,A为焦点,OB为实轴长的双曲线8.关于x的一元二次方程x2-ax+b=0的两根为sinθ,cosθ,求点P(a,b)的轨迹方程(其中|θ|≤π4).解由已知可得{a=sinθ+cosθ,b=sinθcosθ,①②令①2-2×②得a2=2b+1. a=sinθ+cosθ=❑√2sin(θ+π4),|θ|≤π4,∴0≤a≤❑√2.由sinθ·cosθ=12sin2θ,知|b|≤12.∴点P(a,b)的轨迹方程是a2=2b+1(0≤a≤❑√2).9.导学号73144002已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆的圆心为点C.(1)求动点C的轨迹方程;(2)过点F的直线l2交动点C的轨迹于P,Q两点,交直线l1于点R,求⃗RP·⃗RQ的最小值.解(1)由题设知点C到点F的距离等于它到l1的距离,则点C的轨迹是以F为焦点,l1为准线的抛物线.故动点C的轨迹方程为x2=4y.(2)由题意知,直线l2的方程可设为y=kx+1(k≠0),与抛物线方程x2=4y联立消去y,得x2-4kx-4=0.设P(x1,y1),Q(x2,y2),则x1+x2=4k,x1x2=-4.又易得点R的坐标为(-2k,-1),则⃗RP·⃗RQ=(x1+2k,y1+1)·(x2+2k,y2+1)=(x1+2k)(x2+2k)+(kx1+2)(kx2+2)=(1+k2)x1x2+(2k+2k)(x1+x2)+4k2+4=-4(1+k2)+4k(2k+2k)+4k2+4=4(k2+1k2)+8. k2+1k2≥2,当且仅当k2=1时取等号,∴⃗RP·⃗RQ≥4×2+8=16,即⃗RP·⃗RQ的最小值为16.B组1.△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29−y216=1B.x216−y29=1C.x29−y216=1(x>3)D.x216−y29=1(x>4)解析:如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=|AD|-|BF|=8-2=6.根据双曲线定义,所求轨迹是以点A,B为焦点,实轴长为6的双曲线的右支,方程为x29−y216=1(x>3).答案:C2.已知椭圆的焦点是F1,F2,点P是椭圆上的一个动点.若点M是线段F1P的中点,则动点M的轨迹是()A.圆B.椭圆C.双曲线的一支D.抛物线解析:如图,设椭圆的方程为x2a2+y2b2=1(a>b>0).则|PF1|+|PF2|=2a,连接MO,由三角形的中位线可得,|F1M|+|MO|=a(a>|F1O|),则动点M的轨迹是以点F1,O为焦点的椭圆.故选B.答案:B3.设圆(x+1)2+y2=25的圆心为C,点A(1,0)是圆内一定点,Q为圆周上...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?