巅峰冲刺山东省高考数学一轮考点扫描专题14导数的应用2-研究函数的极值与最值含解析

巅峰冲刺山东省2020年高考数学一轮考点扫描专题14导数的应用(2)—研究函数的极值与最值一、【知识精讲】函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.注意:函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.二、【典例精练】考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)【答案】D【解析】由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.【解法小结】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.角度2已知函数求极值【例1-2】(2015山东高考)设函数,其中.(Ⅰ)讨论函数极值点的个数,并说明理由;(Ⅱ)若成立,求的取值范围.【答案】(I):当时,函数在上有唯一极值点;当时,函数在上无极值点;当时,函数在上有两个极值点;(II)的取值范围是.【解析】函数的定义域为令,(1)当时,,在上恒成立所以,函数在上单调递增无极值;(2)当时,①当时,,所以,,函数在上单调递增无极值;②当时,设方程的两根为因为所以,由可得:(3)当时,由可得:当时,,函数单调递增;当时,,函数单调递减;因此函数有一个极值点.综上:当时,函数在上有唯一极值点;当时,函数在上无极值点;当时,函数在上有两个极值点;(II)由(I)知,(2)当时,由,得所以,函数在上单调递增,又,所以,时,,符合题意;(3)当时,由,可得所以时,函数单调递减;又所以,当时,不符合题意;(4)当时,设因为时,所以在上单调递增,因此当时,即:可得:当时,此时,不合题意.综上所述,的取值范围是【解法小结】运用导数求可导函数y=f(x)的极值的一般步骤:(1)先求函数y=f(x)的定义域再求其导数f′(x);(2)求方程f′(x)=0的根;(3)检查导数f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3已知函数的极(最)值求参数的取值【例1-3】(2018·北京卷)设函数f(x)=[ax2-(4a+1)x+4a+3]ex.①若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;②若f(x)在x=2处取得极小值,求a的取值范围.【解析】①因为f(x)=[ax2-(4a+1)x+4a+3]ex,所以f′(x)=[ax2-(2a+1)x+2]ex.f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0.所以a的值为1.②f′(x)=[ax2-(2a+1)x+2]ex=(ax-1)(x-2)ex.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是.【解法小结】已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.考点二利用导数求函数的最值【例2】(2018全国卷II)已知函数f(x)=ex﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解析】证明:(1)当a=1时,函数f(x)=ex﹣x2.则f′(x)=ex﹣2x,令g(x)=ex﹣2x,则g′(x)=ex﹣2,令g′(x)=0,得x=ln2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?