2022年新高考数学基础考点专题练第07讲导数的概念和几何意义考点讲解

第07讲导数的概念和几何意义【学习目标】1.了解导数概念的实际背景,理解导数的几何意义.2.能根据导数的定义求函数y=C(C为常数),y=x,y=,y=x2的导数.【备考指南】1.导数的概念及几何意义是热点问题,难度不大,经常与函数结合,通过求导研究函数的性质.2.导数几何意义的应用是热点问题,难度较大,题型大多是根据导数的几何意义求参数值或参数的取值范围,以及与切线有关的计算、证明问题.【考点总结】1.导数的概念(1)函数y=f(x)在x=x0处的导数一般地,称函数y=f(x)在x=x0处的瞬时变化率lim=lim为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lim=lim.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=lim为f(x)的导函数.【考点解析】【考点】一、导数的几何意义角度一求切线方程例1、(1)(2019·高考全国卷Ⅰ)曲线y=3(x2+x)ex在点(0,0)处的切线方程为________.(2)已知函数f(x)=xlnx,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为________.【解析】(1)因为y′=3(2x+1)ex+3(x2+x)ex=3(x2+3x+1)ex,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x.(2)因为点(0,-1)不在曲线f(x)=xlnx上,所以设切点为(x0,y0).又因为f′(x)=1+lnx,所以直线l的方程为y+1=(1+lnx0)x.所以由解得x0=1,y0=0.所以直线l的方程为y=x-1,即x-y-1=0.【答案】(1)y=3x(2)x-y-1=0角度二求切点坐标例2、(2019·高考江苏卷)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是________.【解析】设A(x0,lnx0),又y′=,则曲线y=lnx在点A处的切线方程为y-lnx0=(x-x0),将(-e,-1)代入得,-1-lnx0=(-e-x0),化简得lnx0=,解得x0=e,则点A的坐标是(e,1).【答案】(e,1)角度三求参数例3、(1)(2019·高考全国卷Ⅲ)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,b=-1(2)(2020·郑州市第一次质量预测)已知函数f(x)=lnx-ax(a∈R)的图象与直线x+y+1=0相切,则实数a的值为________.【解析】(1)因为y′=aex+lnx+1,所以y′|x=1=ae+1,所以曲线在点(1,ae)处的切线方程为y-ae=(ae+1)·(x-1),即y=(ae+1)x-1,所以解得(2)设直线x+y+1=0与函数f(x)=lnx-ax的图象的切点为P(x0,y0),因为f′(x)=-a,所以由题意,得,解得.【答案】(1)D(2)2角度四导数与函数的图象例4、(1)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()(2)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=________.【解析】(1)不妨设导函数y=f′(x)的零点依次为x1,x2,x3,其中x1<0<x2<x3,由导函数的图象可知,y=f(x)在(-∞,x1)上为减函数,在(x1,x2)上为增函数,在(x2,x3)上为减函数,在(x3,+∞)上为增函数,从而排除A,C.y=f(x)在x=x1,x=x3处取到极小值,在x=x2处取到极大值,又x2>0,排除B,故选D.(2)由题图可知曲线y=f(x)在x=3处切线的斜率等于-,所以f′(3)=-.因为g(x)=xf(x),所以g′(x)=f(x)+xf′(x),所以g′(3)=f(3)+3f′(3),又由题图可知f(3)=1,所以g′(3)=1+3×=0.【答案】(1)D(2)0导数几何意义的应用类型及求解思路(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0).(2)若求过点P(x0,y0)的切线方程,可设切点为(x1,y1),由求解即可.(3)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.【变式】1.曲线y=ex-1+x的一条切线经过坐标原点,则该切线方程为______...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?