2.2.3独立重复试验与二项分布

2.2.3独立重复试验与二项分布\s\up7()教材分析本节内容是新课标教材选修2—3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节.通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识古典概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列的有关内容.独立重复试验是研究随机现象的重要途径之一,很多概率模型的建立都以独立重复试验为背景,二项分布就是来自于独立重复试验的一个概率模型.二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似地看成二项分布.在自然现象和社会现象中,大量的随机变量都服从或近似地服从二项分布,实际应用广泛,理论上也非常重要.可以说本节内容是对前面所学知识的综合应用,是一种模型的构建,是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程.会对今后数学及相关学科的学习产生深远的影响.课时分配1课时教学目标知识与技能理解n次独立重复试验的模型及二项分布,能解答简单实际问题;能进行与n次独立重复试验的模型及二项分布有关的概率的计算.过程与方法通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法.情感、态度与价值观感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神.重点难点教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.\s\up7()互斥事件:不可能同时发生的两个事件.P(A+B)=P(A)+P(B).一般地,如果事件A1,A2,…,An彼此互斥,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率:P(AB)=P(A)P(B)一般地,如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积,P(A1A2…An)=P(A1)P(A2)…P(An).提出问题:分析下面的试验,它们有什么共同特点?(1)投掷一个质地均匀的骰子投掷20次;(2)某人射击1次,击中目标的概率是0.8,他连续射击10次;(3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即先赢3局就胜出);(4)一个盒子中装有5个球(3个红球和2个黑球),有放回的依次从中抽取5个球。活动结果:在同一条件下多次重复地做某个试验.(由学生归纳后给出定义)1.n次独立重复试验的定义:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.在n次独立重复试验中,记Ai(i=1,2,…,n)是“第i次试验的结果”.显然,P(A1A2…An)=P(A1)P(A2)…P(An)提出问题:投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?活动设计:由浅入深,增加梯度,旨在引导学生归纳独立重复试验的概率公式.活动结果:连续掷一枚图钉3次,就是做3次独立重复试验。用Ai(i=1,2,3)表示“第i次掷得针尖向上”的事件,用B1表示“仅出现一次针尖向上”的事件,则所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是类似地,连续掷3次图钉,出现次针尖向上的概率是多少?你能发现其中的规律吗?2.二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设次试验中事件A发生的概率是p,则在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n).它是二项式[(1-p)+p]n展开式的第k+1项.设计意图:理所当然引出二项分布概念.于是得到随机变量X的概率分布如下:X01…k…n1123123123()()().BAAAAAAAAA1123123123()()()()PBPAAAPAAAPAAA22232qpqpqpqp(03)kk30123()(),PBPAAAq21123123123()()()()3,PBPAAAPAAAPAAAqp22123123123()()()()3,PBPAAAPAAAPAAAqp33123()().PBPAAAp仔细观察上述等式,可以发现33(),0,1,2,3.k...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?