基于bp神经网络的城市物流需求预测模型

基于BP神经网络的城市物流需求预测模型[摘要]城市物流需求是城市物流规划的重要内容和首要前提,但城市物流需求的复杂性导致难以对其进行精确预测。文章从货运量的角度出发,分析影响货运量的社会经济因素,以北京市为例,建立城市物流需求的BP神经网络预测模型,并通过Matlab进行仿真求解,结果显示用神经网络预测物流需求是非常合理。[关键词]城市物流需求;货运量;BP神经网络预测模型[D0l]10.13939/jki.zgsc.2016.32.0431引言随着物1/充业的兴起,各省市纷纷出台自己的物流发展战略,城市物流规划被提上了城市规划的战略高度,城市规划者希望通过大力发展物流业来带动城---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---市经济的发展,改善城市的投资环境、增加对外资的吸引、解决城市就业压力等,但过快的增长容易造成物流实际供给能力与物流需求的不平衡。[1]因此,对物流需求进行精确预测是城市规划者的首要目标。但由于我国城市物流发展起步较晚,缺乏对现代物流发展理念与运作模式的正确认识,对于预测所需要的历史数据的统计也还很不完整,很不科学,各种物流发展政策的制定、各类物流基础设施的可行性研究等均缺乏物流需求的定量依据。因此,找到一种合适的对物流需求预测行之有效的方法,提高物流量预测的精度,就显得尤为重要。目前对物流需求的预测计算方法有很多,其中使用最多的有计量经济学模型、回归分析法、灰色系统模型、神经网络模型以及组合预测模型。前两种精确度较高,但是需要了解预测对象与影响因素之间的变化关系以及对影响因素的未来发展趋势,难以实现。灰色系统---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---模型适合短期预测且预测精确较低。人工神经网络是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统,有很强的学习和泛化功能,预测精确度局。[2]因此,本文以北京市为实例,尝试建立城市物流需求的BP神经网络预测模型。2城市物流需求度量指标及影响因素分析2.1度量指标分析在现有文献中,对物流需求的度量可采用价值量和实物量两种度量体系。价值量的物流需求是指所有物流环节上全部服务价值构成的综合反映;实物量物流需求为不同环节和功能的具体作业量,如货运量、库存量等。由于城市物流是为满足城市的经济活动和居民生活,研宄对象是城市内的所有物流活动,牵涉时间长、范围广,其价值量难以有效衡量,国家统计也缺乏这方面的数据。此外,城市物流活动的核心内容是货物运输和仓储,其中运输费用占物流总成本---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---的二分之一以上,从此角度来说,货运量Y1的规模可以近似反映物流规模。[3]2.2影响因素分析影响城市物流需求的因素十分广泛且复杂,本文主要从货运量的角度进行分析。一般来讲,影响一个城市的货运量的因素主要有地区生产总值XI、第一产业产值X2、第二产业产值X3、第三产业产值X4、区域零售总额X5、区域外贸总额X6、居民消费水平X7。[4]2.3关联度分析通过灰色关联分析可论证物流需求度量指标货运量与影响因素之间存在强相关性。[5]3BP神经网络简述BP神经网络是目前应用最广泛的人工神经网络,它是一种包含有一个输入层、多个隐含层和一个输出层的单向传播的多层前馈网络。4城市物流需求预测模型的建立---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---4.1数据及预处理本文选取的数据资料是《北京统计年鉴(2008)》(如表1)。根据样本数据选取原则,选取1991-2002年的数据作为网络训练样本,选取2003—2007年的数据为网络测试样本。由于数据存在不同的量纲,需对其进行归一化处理,将数据处理为区间[0,1]之间的数据。归一化公式为:[6]i=xi-xminxmax-xmin(1)本文利用Matlab实现归一化过程。4.2BP网络结构设计4.2.1输入输出、隐层数及隐含节点数据上面对影响因素的分析,确定生产总值等7个因子为输入节点,货运总量为输出节点。由于单隐层BP网络的非线性映射能力非常强,这里采用单隐层的神经网络,而中间层的神经元个数需要通过试验来确定。...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

确认删除?