基于计算机视觉的实时车辆运动速度检测算法研究

基于计算机视觉的实时车辆运动速度检测算法研究摘要:在对比了传统运动车辆实时检测方法的基础上,提出了一种新的G?C二重差分法,将视频流中的某一当前帧与背景帧进行边缘检测,将两帧的结果相减,得到梯度差分,再将此结果与背景颜色差分结果进行“或”运算,提高了车辆存在判断的准确度,此算法可以准确检测出路面运动车辆存在同时有效消除车辆阴影的影响,为后续车辆运动速度的实时检测提供了有力保证。基于运动车辆检测的结果,在VC环境下进行了编程实现,自动检测出运动车辆的实时速度,测试结果表明该算法效果很好。关键词:计算机视觉;车辆检测;速度检测;消除车辆阴影:TN911.73?34文献标识码:A:1004?373X(2016)09?0164?03Abstract:Onthebasisofthecomparisonofthetraditionalmovingvehiclereal?timedetectionmethods,anewG?Cdoubledifferencemethodisproposed.Theedgedetectionofacertaincurrentframeandbackgroundframeinvideostreamisconducted,andthentheresultsaresubtractedfromthetwoframestogetthegradientdifference.Afterthatthe"or"operationforthedifferenceresultandbackgroundcolordifferenceresultisperformedtogreatlyimprovetheaccuracyofthevehiclejudgment.Thisalgorithmcanaccuratelydetecttheexistingmovingvehicleontheroadandeffectivelyeliminatetheeffectofvehicleshadow,whichprovidesastrongguaranteeforthereal?timedetectionofthefollowingvehiclemovingvelocity.Basedontheresultsofmovingvehicledetection,theprogrammingrealizationwasconductedinVCenvironmenttoautomaticallydetectthereal?peedofthemovingvehicle.Thetestresultsshowthattheeffectofthealgorithmisperfect.Keywords:computervision;vehicledetection;speeddetection;vehicleshadowelimination0引言计算机视觉(ComputerVision)主要研究如何运用照相机和计算机获取被拍摄对象的数据与信息,形象的说,就是给计算机安装上“眼睛"(照相机)和“大脑”(算法)。目前,计算机视觉技术的应用领域十分广泛,其在道路交通管理中的应用更是取得了很好的效果。随着科学技术的飞速发展,现代交通在经济发展中所起的作用越来越大,而交通现代化带来的问题也越来越多,诸如交通拥挤、交通事故频发、交通环境恶化等。在这样的大背景下,智能交通系统(IntelligentTrafficSystem,ITS)作为一种强有力的交通管理手段应运而生,其高效率的管理特点使其成为当今世界道路交通管理的发展趋势,而计算机视觉技术则是ITS的重要技术支持。实时车辆运动速度检测是ITS对交通实施监测和管理的重要一环,对车辆速度的检测一方面可以监控超速等违章问题,减少交通事故的发生,另一方面可以根据车速判断道路拥挤程度,进而迅速采取措施,保证道路交通的安全和畅通,从而实现智能交通管理的目的。在上一代iTS中,实时车辆运动速度检测的方法主要有线圈检测、激光检测、雷达检测等,这些速度检测方法多多少少都存在一定的问题,如容易受路基状况、自然环境等的影响精度降低,而在新一代ITS中基于计算机视觉的车辆速度检测法则大大提高了测速的精度,这有赖于计算机有一个“超强大脑”,即好的算法。1运动车辆的检测运动车辆的检测是实时运动车辆速度检测的基础,使计算机能够自动的把相机摄取的视频里的静止物体与运动物体区别开,并且自动提取出运动物体。所以,在研究实时车辆速度检测算法前,先要研究运动车辆的检测算法。1.1现有运动目标检测方法比较目前,常用的运动车辆实时检测方法主要有帧间差分法和背景差分法。1.2.2预处理帧的颜色差分由于无论车身像素值是否低于路面像素值,其梯度边缘必然存在,而交通路面一般都很平坦,除了车道线外检测不到边缘,将当前帧与路面背景模型均进行边缘检测,再将两个边缘图像按式(8)做差得到运动物体的边缘梯度差分图像:3实验结果与分析笔者用实际拍摄的视频图像对上述算法进行了试验测试,实验时模拟实际交通摄像机的安装情况,使其固定不动,计算机处理的速度约为20f/s。首先将视频中的某一帧进行边缘检测,与背景做梯度差分,并与背景颜色差分...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?