浙江专用高考数学一轮复习专题3导数及其应用第22练导数小题综合练练习含解析

第22练导数小题综合练[基础保分练]1.(2019·杭州期末)若直线y=x与曲线y=ex+m(m∈R,e为自然对数的底数)相切,则m等于()A.1B.2C.-1D.-22.(2019·温州模拟)已知函数f(x)的导函数f′(x)的图象如图所示,则函数f(x)的图象可能是()3.已知函数f(x)=+sinx,其导函数为f′(x),则f(2019)+f(-2019)+f′(2019)-f′(-2019)的值为()A.0B.2C.2019D.-20194.设函数f(x)=x(ex+e-x),则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上有极小值C.是奇函数,且在R上是减函数D.是偶函数,且在R上有极大值5.已知函数f(x)=f′(1)x2+2x+2f(1),则f′(2)的值为()A.-2B.0C.-4D.-66.函数f(x)=lnx+(a∈R)在区间[e-2,+∞)上有两个零点,则实数a的取值范围是()A.B.C.D.7.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+>0,若a=f,b=-2f(-2),c=ln·f,则a,b,c的大小关系是()A.a<c<bB.b<c<aC.a<b<cD.c<a<b8.(2019·浙江新昌中学、台州中学联考)已知函数f(x)=ax3+x2+x+1(a∈R),下列选项中不可能是函数f(x)的图象的是()9.已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(-1,0)上单调递减,则a2+b2的取值范围是________.10.已知函数f(x)=x2lnx,若关于x的不等式f(x)-kx+1≥0恒成立,则实数k的取值范围是________.[能力提升练]1.设f(x),g(x)是定义在R上的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时,有()A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x)D.f(x)g(x)>f(a)g(a)2.(2018·湖州模拟)已知曲线f(x)=x3-x2+ax-1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a的取值范围为()A.(3,+∞)B.C.D.(0,3)3.设函数f(x)在R上存在导函数f′(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f′(x)+<4x,若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是()A.B.C.[-1,+∞)D.[-2,+∞)4.已知函数f(x)=的图象上存在两点关于y轴对称,则实数a的取值范围是()A.[-3,-1]B.(-3,-1)C.[-,9e2]D.5.已知f(x)=(x+1)3·e-x+1,g(x)=(x+1)2+a,若存在x1,x2∈R,使得f(x2)≥g(x1)成立,则实数a的取值范围是________.6.若对任意的x∈D,均有g(x)≤f(x)≤h(x)成立,则称函数f(x)为函数g(x)和函数h(x)在区间D上的“中间函数”.已知函数f(x)=(k-1)x-1,g(x)=-2,h(x)=(x+1)lnx,且f(x)是g(x)和h(x)在区间[1,2]上的“中间函数”,则实数k的取值范围是________.答案精析基础保分练1.C2.C3.B4.A5.D6.A7.A8.D9.10.(-∞,1]能力提升练1.C[令F(x)=,则F′(x)=<0,所以F(x)在R上单调递减.又a<x<b,所以>>.又f(x)>0,g(x)>0,所以f(x)g(b)>f(b)g(x).]2.B[f(x)=x3-x2+ax-1的导函数为f′(x)=2x2-2x+a.由题意可得2x2-2x+a=3,即2x2-2x+a-3=0有两个不相等的正实数根,则Δ=4-8(a-3)>0,x1+x2=1>0,x1x2=(a-3)>0,解得3<a<.故选B.]3.A[令F(x)=f(x)-2x2,因为F(-x)+F(x)=f(-x)+f(x)-4x2=0,所以F(-x)=-F(x),故F(x)=f(x)-2x2是奇函数.则当x∈(-∞,0)时,F′(x)=f′(x)-4x<-<0,故函数F(x)=f(x)-2x2在(-∞,0)上单调递减,故函数F(x)在R上单调递减.不等式f(m+1)≤f(-m)+4m+2等价于f(m+1)-2(m+1)2≤f(-m)-2m2,即F(m+1)≤F(-m),由函数的单调性可得m+1≥-m,即m≥-.故选A.]4.D[由题意得,函数y=(x<0)的图象关于y轴对称变换后,与y=2x2-3x,x>0的图象有交点,即aex=2x2-3x有正根,即a=有正根.令g(x)=,x>0,则g′(x)==.令g′(x)=0,得x=或3.当0<x<或x>3时,g′(x)<0,g(x)单调递减;当<x<3时,g′(x)>0,g(x)单调递增.可知,当x=时,g(x)取极小值-e-;当x=3时,g(x)取极大值9e-3.又当x→0或x→+∞时,g(x)→0,故当x=时,g(x)取最小值-e-;当x=3时,g(x)取最大值9e-3,即实数a的取值范围是[-e-,9e-3],故选D.]5.解析f′(x)=3(x+1)2e-x+1-(x+1)3e-x+1=(x+1)2e-x+1(2-x),则可知f(x)在(-∞,2)上单调递增,在(2,+∞)上单调递减,故f(x)max=f(2)=.g(x)=(x+1)2+a在(-∞,-1)上单调递减,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?