高考数学考点分析与突破性讲练专题34圆锥曲线综合应用理

专题34圆锥曲线综合应用一、考纲要求:1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.二、概念掌握和解题上注意点:1.判断直线与圆锥曲线的位置关系,一般是将直线与圆锥曲线方程联立,消去x或y,判断该方程组解的个数,方程组有几组解,直线与圆锥曲线就有几个交点.但应注意两点:1).消元后需要讨论含x2或y2项的系数是否为0.2).重视“判别式Δ”起的限制作用.2.对于选择题、填空题,要充分利用几何条件,借助数形结合的思想方法直观求解,优化解题过程.3.处理中点弦问题的常用方法1).点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2,三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.2).根与系数的关系:即联立直线与圆锥曲线的方程,将其转化为一元二次方程后由根与系数的关系求解.三、高考考题题例分析例1.(2020·全国卷Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率,(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【答案】(1)1;(2)y=x+7.(2)由y=,得y′=.例2.(2020浙江高考)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y)-<x<.过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.【答案】(1)(-1,1);(2)【解析】(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)联立直线AP与BQ的方程解得点Q的横坐标是xQ=.因为|PA|==(k+1),|PQ|=(xQ-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3.令f(k)=-(k-1)(k+1)3,因为f′(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.8.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点.若BP=2PA,且OQ·AB=1,则点P的轨迹方程是()A.x2+3y2=1(x>0,y>0)B.x2-3y2=1(x>0,y>0)C.3x2-y2=1(x>0,y>0)D.3x2+y2=1(x>0,y>0)【答案】A9.已知直线l:y=2x+3被椭圆C:+=1(a>b>0)截得的弦长为7,则下列直线中被椭圆C截得的弦长一定为7的有()①y=2x-3;②y=2x+1;③y=-2x-3;④y=-2x+3.A.1条B.2条C.3条D.4条【答案】C【解析】直线y=2x-3与直线l关于原点对称,直线y=-2x-3与直线l关于x轴对称,直线y=-2x+3与直线l关于y轴对称,故有3条直线被椭圆C截得的弦长一定为7.10.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为()A.+=1B.+=1C.+=1D.+=1【答案】A【解析】因为直线AB过点F(3,0)和点(1,-1),所以直线AB的方程为y=(x-3),代入椭圆方程+=1消去y,得x2-a2x+a2-a2b2=0,所以AB的中点的横坐标为=1,即a2=2b2.又a2=b2+c2,所以b=c=3,a=3,所以E的方程为+=1.11.已知两定点A(0,-2),B(0,2),点P在椭圆+=1上,且满足|AP|-|BP|=2,则AP·BP为()A.-12B.12C.-9D.9【答案】D12.抛物线C的顶点为原点,焦点在x轴上,直线x-y=0与抛物线C交于A,B两点.若P(1,1)为线段AB的中点,则抛物线C的方程为()A.y=2x2B.y2=2xC.x2=2yD.y2=-2x【答案】B【解析】设A(x1,y1),B(x2,y2),抛物线方程为y2=2px,则两式相减可得2p=·(y1+y2)=kAB·2=2,即可得p=1,∴抛物线C的方程为y2=2x.二、填空题13.已知倾斜角为60°的直线l通过抛物线x2=4y的焦点,且与抛物线相交于A,B两点,则弦AB的长为__________.【答案】16【解析】直线l的方程为y=x+1,由得y2-14y+1=0.设A(x1,y1),B(x2,y2),则y1+y2=14,∴|AB|=y1+y2+p=14+2=16.14.已知(4,2)是直线l被椭圆+=1所截得的线段的中点,则l的方程是__________.【答案】x+2y-8=015.已知椭圆+=1(0<b<2)与y轴交于A,B两点,点F为该椭圆的一个焦点,则△ABF的面积的最大值为__________.【答案】2【解析】不妨设点F的坐标为(,0),而|AB|=2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?