新基于NaiveBayesian算法改进的智能诊病系统研究汇编

新版基于NaiveBayesian算法改进的智能诊病系统研究汇编摘要:本文简述了智能诊病系统的发展,简单介绍了智能诊病系统,指出了它的一些局限性,并且介绍了NaiveBayesian算法的原理,提出了以该算法为基础的改进方案。关键词:智能诊病;人工智能;专家系统;知识库;推理机;NaiveBayesian算法:TH165.3文献识别码:A:1001-828X(202x)009-0-01一、智能诊病系统的发展人工智能是现今最尖端的技术之一,近三十年来,人工智能发展迅速,在很多领域都得到了广泛的应用。专家系统是人工智能重要的一个分支,它通过一个或多个专家提供的专业领域知识,模拟人类专家解决那些需要专业领域知识才能完成的问题。1965年,美国斯坦福大学研制出了DENRAL系统,该系统具有丰富的化学知识,能帮助化学家推断出分子的结构。DENRAL系统的完成标志着专家系统的诞生。20世纪70年代初,NTERNIST系统在匹兹堡大学问世,这是第一个用于医疗的内科病诊断咨询系统。同一时期,一款能够帮助普通内科医生诊治细菌感染性疾病的专家系统MYCIN也在斯坦福大学出世,这两款专家系统的成功激发了智能诊病系统的开发热潮,国内外都开始往这方面投入大量的人力物力。到21世纪初,智能诊病系统已经相对成熟。二、智能诊病系统智能诊病系统以基于规则的方式来构建系统,它主要将系统分为知识库和推理机两部分,知识库中存储着各种医学知识的集合,包含从书本中知识,以及医学专家的知识和经验,而推理机根据用户提供的有效信息,来决定所使用的推理规则,通过从知识库中获取的相关知识进行推理判断,从而得出最终的结论。推理分为精确推理和不精确推理,精确推理根据条件和结论之间的必然性,得出的结果是肯定的,不精确推理:在条件不足的情况下,得到的假设不能被完全证实,这个时候为每个假设赋予一个权值来表明这个假设的可信度,通过这些假设进行下一步推理,可能会得到多个不同的结论,以可信度最高的结论作为最终结论。三、智能诊病系统的缺点难以得到足够知识和规则填充知识库,智能诊病系统做为基于规则的专家系统,需要以大量知识和医学专家规则作为基础,才能够准确地诊断病人的病情,这就需要大量的医学专家和知识工程师的参与才能够实现。缺乏学习能力,跟一般的基于规则的专家系统一样,智能诊病系统不具备从诊病过程中提取经验进行学习的能力,只会依循本来就存在的规则和知识进行推理判断,更新知识库,添加规则些工作仍然需要知识工程师来完成。NaiveBayesian算法:Na?veBayesian算法能够较好地对事物进行分类,具有结构简单,计算高效等特点,是分类算法中最经典,最有影响力的算法之一。Na?veBayesian算法首先需要通过训练样本计算出先验概率,在此基础上,计算一个待分类的后验概率。下面是Na?veBayesian算法的定义,对于一个待分类的事物x,设:1.x有{a1,a2,a3,……an}这样一个属性集,每个a都是x的一个特征属性。2.有{y1,y2,y3,……ym}这样一个类别集合,每个y代表一个类别。3.分e计算P(y1|x),P(y2|x),P(y3|x),…..,P(ym|x)的概率。4.如果有P(yi|x)>=P(yj|x)(j属于1~n),则事物x属于类型yk。在这里,我们称P(yi|x)为后验概率,根据贝叶斯定理,P(yi|x)=P(x|yi)P(yi)/p(x)。由于对于所有的后验概率,都需要除以P(x),所以在这里我们可以将P(x)忽略,只求出最大的P(x|yi)P(yi)即可。P(x|yi)P(yi)=P(a1|yi)P(a2|yi)P(a3|yi)…P(an|yi)P(yi),其中P(aj|yi)和P(yi)我们都需要通过样本数据进行计算:1.设有样本集{x1,x2,…xn},每个样本有一个属性集a其中包含若干属性。2.有{y1,y2,…ym}这样一个类别集合。3.P(yi)为样本中类别yi的个数/样本总数。4.P(aj|yi)为样本中类别yi中含有aj属性的个数/类别中yi的个数。通过NaiveBayesian算法对智能诊病系统的改进:由于知识库中知识量和规则的限制,智能诊病系统可能会出现无法准确判断用户病情的状况,通过Na?veBayesian算法可以有效地改善这一情况。一个人患病的原因会跟他平时的生活环境,生活习惯还有家族遗传有很大的关系,由此,我们可以将生活环境,生活习惯和家族遗传作为特征...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?