基于融合强度与纹理差分的图像鲁棒性变化检测

基于融合强度与纹理差分的图像鲁棒性变化检测摘要:为对图像变化内容进行分割,提出基于纹理和融合强度的图形变换检测新方法。阐述了纹理差分测量是基于梯度向量之间的关系,并对噪声及光照变化的鲁棒性进行了分析;提出融合纹理和纹理差分的方法,该方法通过纹理特征在邻域内的显著性来加权结合两种测量法。实验结果显示,相比单独使用强度或纹理差分的方法,该方法能获得更好的分割效果。关键词:纹理差分;图像分割;变化检测技术DOIDOI:10.11907/rjdk,161812中图分类号:TP317.4文献标识码:A文章编号:16727800(2016)0100158030引言运动分析中的一个基本问题是运动分割。对于动态场景分析的大部分运动分割技术是基于检测画面结构顺序[1],变化检测为进一步处理减少了大量数据。现存的变化检测技术可被归为两类:基于像素的方法和基于范围的方法。大部分直接检测变化技术仅仅是简单地根据阈值来检测[2]。像素水平级的强度变化检测由于没有考虑到局部的结构信息,其检测结果对于噪声和光照变化是非常敏感的;基于范围差异的测量法的鲁棒性则根据不同局部结构特征或纹理的不相似性来呈现[3]。考虑到噪声和背景光照变化,背景纹理依然能够保持相对稳定,除非被移动对象所覆盖或者突然出现光照变化。在覆盖背景区域被移动对象所覆盖时,即使前景和背景的灰阶分布是相似的,这两部分区域的纹理通常是不同的。对于前景和背景相似的区域,纹理差分方法的可靠性就比简单的强度差分要低。因此,适当地整合纹理差异和强度来进行鲁棒性变化检测是可取的。本文提出了一种新的基于局部梯度向量之间的关系来测量纹理差分度的方法,并且对强度差分和纹理差分的融合方法进行了说明。实验结果显示,相比单独使用纹理差分法或者强度方法,本文所提出的方法能够更为准确地检测出图像的鲁棒性变化。1纹理差分法纹理是图像呈现的重要特征,它表现了在一个区域内像素在灰阶上的空间分布。现有很多可行方法来描述纹理特征,例如灰度共生矩阵[4]、傅里叶功率谱和Gabor滤波器[5]。在被用来进行图像分割和分类时,它们依据与相邻位置具有相似局部结构来聚集像素,这些相似性从灰阶分类的统计里或者大量样本的频谱特征中被提取出来[6],这就不能满足监控实时性的要求且需要足够多的样本。而对于两幅图像的对比,本文提出了一种基于梯度信息的简单有效的纹理差分测量方法。一个有效的纹理差异方法应该能够精确表现两种局部空间灰阶分类的差别。由于梯度值可作为一个有效的方法用来描述灰阶在附近范围内是如何变化的,并且其对光照变化不敏感,因此它能够被用来实现局部纹理差别方法。4实验结果与分析图2为变化图像的背景,图3为变化图像的前景,图4为人工分割的变化区域,图5为用本文提出的方法所获得的分割图像,图6为基于强度所获得的分割图像,图7为基于纹理差分所得的分割图像。从这一组图像中可以看到,位于右边的人物头部处于背景中较黑的区域,与背景的强度较为相似。因此,在基于强度的变化检测中,该部分区域未能被检测岀(见图6)o而基于纹理差分以及本文所提出的方法均能很好地检测出该部分区域。从图5可看出本文方法可较好地分割出背景中出现的两个人的区域,并且对右边人物在墙上产生的阴影进行了排除。5结语本文提岀了基于强度和纹理差分的图像变化检测方法。其中纹理差分方法是基于两个梯度向量之间的关系,并就纹理差分法对光照变化及噪声的鲁棒性进行了分析,提出了强度和纹理差分集成的方法。通过本文提出的变化检测方法对图像进行分割,对实验结果进行视觉和定量评估分析。结果显示,相比单独使用强度或纹理差分的方法,本文提出的方法准确率更高,能够很好地运用于图像变化检测中。参考文献参考文献:[1]刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012(6):912922.[2JGONGMAOGUO,YANL,JIAOS.FuzzyCmeansclusteringwithlocalinformationandkernelmet-ricforimagesegmentation[J].IEEETransactionsonIm-ageProcessing,2013,22(2):573584.[3]GONGM,ZHOUZ,MAJ.Changedetectioninsyntheticapertureradarimagesbasedonimagefusionandfuzzyclustering[JJ.IEEET...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?