蚁群算法在连续函数优化求解中的应用

一种用于快速全局优化的蚁群算法*摘要:针对蚁群算法不太适用于连续优化问题,且在搜索过程中容易陷入局部极值的缺点,提出了一种快速全局优化的改进蚁群算法,该算法同时采用在最好解蚂蚁领域内进行搜索及将本次循环得到的最优解作为起始解的搜索方式,以扩大其搜索范围,避免其陷入局部最优。通过对三个典型函数优化问题进行测试并与其他优化算法进行比较,结果表明该改进算法不仅能应用于对连续对象的优化,同时具有良好的全局优化性能,收敛速率快,寻优精度高。关键词:蚁群算法;全局优化;连续优化;局部极值:TP301.6文献标识码:AANIMPROVEDANTCOLONYALGORITHMSOLVINGFASTGLOBALOPTIMIZATIONPROBLEMSAbstract:Aimtothedisadvantagesthatantcolonyoptimizationisnotappliedtocontinuousoptimizationproblemsandeasytogetintolocaloptimum,afastglobalantcolonyalgorithmisproposed.Inthisalgorithmthesearchingwaythatsearchesnearthebestsolutionandmakesthebestsolutionastheinitialsolutionisadoptedinordertowidensearchingscopetoavoidgettingintolocaloptimum,andthenitisappliedtotestsometypicalfunctions.Theresultthatcompareswithotheroptimizationsontestingthesefunctionsshowedthattheimprovedalgorithmisnotonlyappliedtocontinuousoptimizationproblems,butalsohasfastglobaloptimization,fastsearchingrateandhighoptimizingprecision.Keywords:Antcolonyalgorithm;Globaloptimization;Continuousoptimization;Localoptimum0引言全局优化问题在实际工程中有较广泛的应用价值,其求解方法(如自适应随机搜索,遗传算法,模拟退火算法,蚁群算法等)也越来越受到人们的重视。其中蚁群算法采用分布式并行计算机制,具有较强的鲁棒性,容易于其它算法结合,因此比其它算法的应用性更广泛[4,5]。文献[6]针对蚁群算法不适用于连续问题的求解,提出了一种适用于连续域的改进蚁群算法,但仍然存在着容易陷入局部最优解,收敛速度慢的缺点,文献[7]针对蚁群算法易于陷入局部最优解的问题,对蚁群算法引入遗传算法,进行一定的改进,改进的算法能克服局部极值问题,但收敛速度不够快。由于蚁群算法存在着上述这些缺点,制约着它向众多领域的进一步推广应用。为了克服这些问题,本文提出了一种改进蚁群算法,该算法同时采用在最好解蚂蚁的领域内进行搜索及将本次循环得到的最优解作为下次循环起始解的搜索方式。通过有效扩大其搜索范围来避免陷入局部最优问题,在一定程度上提高了蚁群算法的优化质量和收敛效率,并利用该算法对三个典型优化函数进行测试,结果进一步证明了该算法的有效性。1蚁群算法蚁群算法[8](ACO)是由意大利学者Dorigo等人在九十年代提出的,用于解决组合优化问题的一种随机搜索算法。该算法的原理是基于蚂蚁在寻找食物的过程中,会在所经路径释放一种化学物质(即信息素),蚂蚁之间的交流就是依靠这种物质,凭借残留在路径上信息素量的大小,蚂蚁总能找到一条从食物源与蚁巢的最短路径。现以著名的双桥实验来说明蚁群算法的原理,假定所有蚂蚁从蚁巢到食物源的路径有两条,开始时两条分支上都不存在信息素,蚂蚁对这两条分支的选择不存在任何偏向性,并以相同的概率进行选择。由于蚂蚁在所经过的路径上会释放信息素,那么会有更多的蚂蚁选择短路径,短路径上的信息素量就越多,而这种高浓度的信息素将促使更多的蚂蚁选择这条分支,最终所有的蚂蚁都集中到这条分支上。其中每一只蚂蚁的选择都是根据路径上信息素量大小决定的。一般来说,蚁群算法可以认为是三个过程的相互作用:初始化参数、蚂蚁构建解、更新信息素。第一个步骤,主要是信息素和各参数的初始化;第二个步骤,每一个蚂蚁根据转移概率准则来选择下一地点,直到创建一个完整路径,其中转移概率是分支上信息素的函数;第三个步骤,信息素的更新,它的更新规则有两种:(a)信息素的挥发,它有助于搜索更好解,“忘记”先前的较差解。信息素蒸发公式如下:(1)式中表示在路径ij上的信息素大小,代表信息素的挥发系数,代表信息素的残留系数。(b)信息素的增加,它与蚂蚁所经路径长度成正比。...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?