高等数学同济第五下册工科期末资料

一、填空题(每空3分,共15分)(1)函数11zxyxy的定义域为(2)已知函数arctanyzx,则zx(3)交换积分次序,2220(,)ydyyfxydx=(4)已知L是连接(0,1),(1,0)两点的直线段,则()Lxyds(5)已知微分方程230yyy,则其通解为二、选择题(每空3分,共15分)(1)设直线L为321021030xyzxyz,平面为4220xyz,则()A.L平行于B.L在上C.L垂直于D.L与斜交(2)设是由方程2222xyzxyz确定,则在点(1,0,1)处的dz()A.dxdyB.2dxdyC.22dxdyD.2dxdy(3)已知是由曲面222425()zxy及平面z5所围成的闭区域,将22()xydv在柱面坐标系下化成三次积分为()A.2253000drdrdzB.2453000drdrdzC.22535002rdrdrdzD.2252000drdrdz(4)已知幂级数,则其收敛半径()A.2B.1C.12D.2(5)微分方程3232xyyyxe的特解y的形式为y()A.B.()xaxbxeC.()xaxbceD.()xaxbcxe三、计算题(每题8分,共48分)求过直线1L:123101xyz且平行于直线2L:21211xyz的平面方程已知22(,)zfxyxy,求zx,zy设22{(,)4}Dxyxy,利用极坐标求2Dxdxdy求函数22(,)(2)xfxyexyy的极值5、计算曲线积分2(23sin)()yLxyxdxxedy,其中L为摆线sin1cosxttyt从点O(0,0)到(,2)A的一段弧6、求微分方程xxyyxe满足11yx的特解四.解答题(共22分)1、利用高斯公式计算22xzdydzyzdzdxzdxdy,其中由圆锥面22zxy与上半球面222zxy所围成的立体表面的外侧(10)2、(1)判别级数111(1)3nnnn的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6)(2)在(1,1)x求幂级数1nnnx的和函数(6)高等数学(下)模拟试卷二一.填空题(每空3分,共15分)12nnnnx(1)函数2224ln(1)xyzxy的定义域为;(2)已知函数xyze,则在(2,1)处的全微分dz;(3)交换积分次序,ln10(,)exdxfxydy=;(4)已知L是抛物线2yx上点O(0,0)与点B(1,1)之间的一段弧,则Lyds;(5)已知微分方程20yyy,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为300xyzxyz,平面为10xyz,则L与的夹角为();A.0B.2C.3D.4(2)设(,)zfxy是由方程333zxyza确定,则zx();A.2yzxyzB.2yzzxyC.2xzxyzD.2xyzxy(3)微分方程256xyyyxe的特解y的形式为y();A.2()xaxbeB.2()xaxbxeC.2()xaxbceD.2()xaxbcxe(4)已知是由球面2222xyza所围成的闭区域,将dv在球面坐标系下化成三次积分为();A222000sinaddrdrB22000addrdrC2000addrdrD.22000sinaddrdr(5)已知幂级数1212nnnnx,则其收敛半径().A.2B.1C.12D.2三.计算题(每题8分,共48分)求过A(0,2,4)且与两平面1:21xz和2:32yz平行的直线方程.已知(sincos,xy)zfxye,求zx,zy.设22{(,)1,0}Dxyxyyx,利用极坐标计算arctanDydxdyx.1..求函数22(,)56106fxyxyxy的极值.1、利用格林公式计算(sin2)(cos2)xxLeyydxeydy,其中L为沿上半圆周222(),0xayay、从A(2,0)a到O(0,0)的弧段.6、求微分方程32(1)1yyxx的通解.四.解答题(共22分)1、(1)(6)判别级数11(1)2sin3nnnn的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4)在区间(1,1)内求幂级数1nnxn的和函数.2、(12)利用高斯公式计算2xdydzydzdxzdxdy,为抛物面22zxy(01)z的下侧高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共15分)1、{(,)|0,0}xyxyxy2、22yxy3、4102(,)xxdxfxydy4、25、312xxyCeCe二、选择题:(每空3分,共15分)1.C2.D3.C4A5.D三、计算题(每题8分,共...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?