一、填空题(每空3分,共15分)(1)函数11zxyxy的定义域为(2)已知函数arctanyzx,则zx(3)交换积分次序,2220(,)ydyyfxydx=(4)已知L是连接(0,1),(1,0)两点的直线段,则()Lxyds(5)已知微分方程230yyy,则其通解为二、选择题(每空3分,共15分)(1)设直线L为321021030xyzxyz,平面为4220xyz,则()A.L平行于B.L在上C.L垂直于D.L与斜交(2)设是由方程2222xyzxyz确定,则在点(1,0,1)处的dz()A.dxdyB.2dxdyC.22dxdyD.2dxdy(3)已知是由曲面222425()zxy及平面z5所围成的闭区域,将22()xydv在柱面坐标系下化成三次积分为()A.2253000drdrdzB.2453000drdrdzC.22535002rdrdrdzD.2252000drdrdz(4)已知幂级数,则其收敛半径()A.2B.1C.12D.2(5)微分方程3232xyyyxe的特解y的形式为y()A.B.()xaxbxeC.()xaxbceD.()xaxbcxe三、计算题(每题8分,共48分)求过直线1L:123101xyz且平行于直线2L:21211xyz的平面方程已知22(,)zfxyxy,求zx,zy设22{(,)4}Dxyxy,利用极坐标求2Dxdxdy求函数22(,)(2)xfxyexyy的极值5、计算曲线积分2(23sin)()yLxyxdxxedy,其中L为摆线sin1cosxttyt从点O(0,0)到(,2)A的一段弧6、求微分方程xxyyxe满足11yx的特解四.解答题(共22分)1、利用高斯公式计算22xzdydzyzdzdxzdxdy,其中由圆锥面22zxy与上半球面222zxy所围成的立体表面的外侧(10)2、(1)判别级数111(1)3nnnn的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6)(2)在(1,1)x求幂级数1nnnx的和函数(6)高等数学(下)模拟试卷二一.填空题(每空3分,共15分)12nnnnx(1)函数2224ln(1)xyzxy的定义域为;(2)已知函数xyze,则在(2,1)处的全微分dz;(3)交换积分次序,ln10(,)exdxfxydy=;(4)已知L是抛物线2yx上点O(0,0)与点B(1,1)之间的一段弧,则Lyds;(5)已知微分方程20yyy,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为300xyzxyz,平面为10xyz,则L与的夹角为();A.0B.2C.3D.4(2)设(,)zfxy是由方程333zxyza确定,则zx();A.2yzxyzB.2yzzxyC.2xzxyzD.2xyzxy(3)微分方程256xyyyxe的特解y的形式为y();A.2()xaxbeB.2()xaxbxeC.2()xaxbceD.2()xaxbcxe(4)已知是由球面2222xyza所围成的闭区域,将dv在球面坐标系下化成三次积分为();A222000sinaddrdrB22000addrdrC2000addrdrD.22000sinaddrdr(5)已知幂级数1212nnnnx,则其收敛半径().A.2B.1C.12D.2三.计算题(每题8分,共48分)求过A(0,2,4)且与两平面1:21xz和2:32yz平行的直线方程.已知(sincos,xy)zfxye,求zx,zy.设22{(,)1,0}Dxyxyyx,利用极坐标计算arctanDydxdyx.1..求函数22(,)56106fxyxyxy的极值.1、利用格林公式计算(sin2)(cos2)xxLeyydxeydy,其中L为沿上半圆周222(),0xayay、从A(2,0)a到O(0,0)的弧段.6、求微分方程32(1)1yyxx的通解.四.解答题(共22分)1、(1)(6)判别级数11(1)2sin3nnnn的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4)在区间(1,1)内求幂级数1nnxn的和函数.2、(12)利用高斯公式计算2xdydzydzdxzdxdy,为抛物面22zxy(01)z的下侧高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共15分)1、{(,)|0,0}xyxyxy2、22yxy3、4102(,)xxdxfxydy4、25、312xxyCeCe二、选择题:(每空3分,共15分)1.C2.D3.C4A5.D三、计算题(每题8分,共...