8.4.1平面解析版-2020-2021学年高一数学新教材同步课堂精讲练导学案人教A版2019必修

8.4.1平面导学案编写:廖云波初审:谭光垠终审:谭光垠廖云波【学习目标】1.掌握平面的表示法,点、直线与平面的位置关系2.掌握有关平面的三个公理3.会用符号表示图形中点、直线、平面之间的位置关系【自主学习】知识点1平面(1)平面的概念①平面是一个不加定义,只需理解的原始概念.②立体几何里的平面是从呈平面形的物体中抽象出来的.如课桌面、黑板面、平静的水面等都给我们平面的局部形象.(2)平面的画法常常把水平的平面画成一个平行四边形,并且其锐角画成45°,且横边长等于邻边长的2倍.一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来.(3)平面的表示方法①用希腊字母表示,如平面α,平面β,平面γ.②用表示平面的平行四边形的四个顶点的大写字母表示,如平面ABCD.③用表示平面的平行四边形的相对的两个顶点表示,如平面AC,平面BD.知识点2点、直线、平面之间的关系点、直线、平面之间的基本位置关系及语言表达文字语言符号语言图形语言A在l上A∈lA在l外AlA在α内A∈αA在α外Aαl在α内l⊂αl在α外lαl,m相交于Al∩m=Al,α相交于Al∩α=Aα,β相交于lα∩β=l知识点3平面的基本性质公理文字语言图形语言符号语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α①确定直线在平面内的依据②判定点在平面内公理2过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线存在唯一⇒的平面α使A,B,C∈α①确定平面的依据②判定点线共面公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α且P∈β⇒α∩β=l,且P∈l①判定两平面相交的依据②判定点在直线上【合作探究】探究一点、直线、平面之间的位置关系的符号表示【例1】如图,用符号表示下列图形中点、直线、平面之间的位置关系.解在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.归纳总结:1用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.2要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”,直线与平面的位置关系只能用“⊂”或“⊄”.【练习1】根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.解(1)点A在平面α内,点B不在平面α内,如图①.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图②.(3)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC,如图③.探究二点线共面【例2】如图,已知:a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.证明因为PQ∥a,所以PQ与a确定一个平面β.所以直线a⊂β,点P∈β.因为P∈b,b⊂α,所以P∈α.又因为a⊂α,所以α与β重合,所以PQ⊂α.归纳总结:证明点、线共面的两种方法方法一:先由确定平面的条件确定一个平面,然后再证明其他的点、线在该平面内.方法二:先由有关点、线确定一个平面α,再由其余元素确定一个平面β,然后根据有关定理,证明这两个平面重合【练习2】已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.证明方法一(纳入平面法) l1∩l2=A,∴l1和l2确定一个平面α. l2∩l3=B,∴B∈l2.又 l2⊂α,∴B∈α.同理可证C∈α. B∈l3,C∈l3,∴l3⊂α.∴直线l1,l2,l3在同一平面内.方法二(辅助平面法) l1∩l2=A,∴l1和l2确定一个平面α. l2∩l3=B,∴l2,l3确定一个平面β. A∈l2,l2⊂α,∴A∈α. A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A,B,C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1,l2,l3在同一平面内.探究三点共线、线共点问题【例3】如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE、D1F,DA三线交于一点.证明如图,连接EF,D1C,A1B. E为AB的中点,F为AA1的中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?