互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验

本周课题:互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验本周重点:1、互斥事件、对立事件的概率的求法2、相互独立事件同时发生的概率乘法公式.3、正向思考:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的和事件或相互独立事件的积事件.4、n次独立重复试验中某事件恰好发生n次的概率计算公式.本周难点:1、互斥事件、对立事件的概念2、事件的相互独立性的判定,独立重复试验的判定3、事件的概率的综合应用.本周内容:1、事件的和、事件的积的意义(1)A+B表示这样一个事件:在同一试验下,A或B中至少有一个发生就表示它发生.事件“A1+A2+…+An”表示这样一个事件:在同一试验中,A1,A2,…,An中至少有一个发生即表示它发生.(2)A·B表示这样一个事件:事件A与事件B中都发生了就表示它发生.事件“A1·A2·…·An”表示这样一个事件:A1,A2,…,An中每一个都发生即表示它发生.2、互斥事件(1)不可能同时发生的两个事件叫做互斥事件.一般地:如果事件A1,A2,…,An中的任何两个都是互斥的,那么就说事件A1,A2,…,An,彼此互斥.(2)一般地:如果事件A,B互斥,那么事件A+B发生(即A,B中有一个发生)的概率,等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B)(说明:如果事件A,B不互斥,则P(A+B)=P(A)+P(B)-P(A·B))如果事件A1,A2,…,An彼此互斥,那么事件A1+A2+…+An发生(即A1,A2,…,An中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)3、对立事件(1)必有一个发生的两个互斥事件叫做对立事件,事件A的对立事件记作(2)(3)对于互斥事件要抓住如下的特征进行理解:第一:互斥事件研究的是两个事件之间的关系;第二:所研究的两个事件是在一次试验中涉及的;第三:两个事件互斥是从试验的结果不能同时出现来确定的.从集合角度来看,A、B两个事件互斥,则表示A、B这两个事件所含结果组成的集合的交集是空集.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,集合A的对立事件记作,从集合的角度来看,事件所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即.对立事件一定是互斥事件,但互斥事件不一定是对立事件.(4)分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.4、相互独立事件(1)事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件(2)两个相互独立事件A、B同时发生的概率,等于每个事件发生的概率的积.即:P(A·B)=P(A)·P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。即:P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)(3)关于相互独立事件也要抓住以下特征加以理解:第一:相互独立也是研究两个事件的关系;第二:所研究的两个事件是在两次试验中得到的;第三:两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的.(4)互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.独立重复试验(1)独立重复试验指在同样条件下进行的,各次之间相互独立的一种试验.(2)一般地,如果在1次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率,它是[(1-P)+P]n展开式的第k+1项。本周例题例1、袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:(1)摸出2个或3个白球;(2)至少摸出1个白球;(3)至少摸出1个黑球.解:从8个球中任意摸出4个共有种不同的结果.记从8个球中任取4个,其中恰有1个白球为事件Al;恰有2个白球为事件A2;恰有3个白球为事件A3;4个白球为事件A4;恰有i个黑球为事件Bi,则(1)摸出2个或3个白球的概率(2)至少摸出1个白球的概率P2=1-P(B4)=1-0=1(3)至少摸出1个黑球的概率例2、设从标有自然数1001到8000的7000张卡片中随意抽出1张,求其数字恰是3或7的倍数的概率。解:记...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?