粗集一遗传支持向量机模型在供应链绩效评价中应用

粗集一遗传支持向量机模型在供应链绩效评价中的应用-农学论文粗集一遗传支持向量机模型在供应链绩效评价中的应用武雯娟(泰安职业技术学院财经系,山东泰安271000)摘要:将粗集-遗传支持向量机模型运用到供应链绩效评价中,首先利用粗集理论剔除影响供应链绩效评价的冗余因素,获得核心影响因素,再采用支持向量机对于提取得到的核心影响因素预测供应链绩效所处的级别。在支持向量机分类过程中,利用遗传算法对支持向量机算法的参数进行寻优,获得最佳参数模型,而后预测得到供应链绩效评价级别。最后,实例运用此模型进行了预测,并与只运用粗集-支持向量机进行预测的结果进行对比。结果表明,利用粗集-遗传支持向量机方法对供应链绩效评价级别的预测准确率更高,预测结果更符合实际,是一种科学可行的方法。关键词:供应链;绩效评价;粗集理论;支持向量机;遗传算法中图分类号:TP18文献标识码:A文章编号:0439-8114(2015)03-0733-05随着经济全球化,企业的经营环境发生了巨大的变化。越来越多的企业管理者已经意识到,未来的企业竞争将是供应链(SupplyChain,简称SC)与供应链之间的竞争,而不是企业之间的竞争。企业为了在市场竞争中始终处于有利地位,获得长期竞争优势及利益,就必须建立高效、安全、可靠的供应链系统,供应链系统可以各种辅助手段实现其一体化过程。所谓供应链是指将产品和服务提供给最终消费者的所有环节的企业所构成的上下游产业一体化的体系。供应链管理是从系统的观点出发,通过对采购、制造、分销直至消费者的整个过程中的资金流、物流、信息流的协调,通过此种管理模式来满足消费者的要求及需求。然而只有对供应链系统中的各成员供应链绩效评价理论及其重要性的认识统一,才能让他们将对整个供应链系统的贡献度作为自己的考核目标,并将这些具体指标达成情况作为利益分配及任务分配的依据,如此才能使供应链的整体绩效切实得到提高。目前,将粗集-遗传支持向量机(GA-SVM)方法应用到供应链绩效评价领域的研究并不多见,本研究主要利用粗糙集理论剔除供应链绩效评价的冗余因素及指标,提取获得影响供应链绩效评价的核心因素,再运用对于小样本具有良好泛化能力的支持向量机来进行评价,支持向量机的评价过程中通过遗传算法来进行相关参数寻优操作[1,2]。1粗集理论波兰学者Pawlak于1982年提出了粗糙集(RoughSet)理论,粗糙集理论就是在无需提供问题需要处理数据之外的任何其他先知信息,而是仅根据已知的数据剔除冗余信息,获得本质信息,分析得到知识的不完整程度,生成决策或分类的相关规则及准则,实现通过分类准则或规则对已知数据进行精简或约减,对于处理未确知和模糊数据具有良好的效果[3-5]。1.1信息系统一个信息系统S通过下式表示:S=(U,A,V,f),其中U为论域,(U={x1,x2,……,xn})由有限个研究对象组成;A=C∪D为属性集,其中C是条件属性集,D是决策属性集;V是值域;f是映射,对a∈A,x∈U,实现关于属性a的值。1.2不可区分关系粗糙集理论将知识和分类紧密联系起来,知识是对客观数据进行分类的能力,分类就是将差别的数据对象分析成为一类,它们之间的关系称之为不可分辨关系或等价关系,其中知识库可以用K=(U,R)表示,其中U是非空有限集,称之为论域,R是U上的一族等价关系。UΠR为R的所有等价类族。[X]R表示包含元素x∈U的R的等价类。若yyPR且P≠?椎,则P中全部等价关系的交集也是一种等价关系,称为P上的不可区分关系,记为ind(p),1.3属性约简与核定义1:假设S=(U,R)为信息系统,R是U上的等价关系族,x∈R,若U/IND(R)=U/IND(R-r),则称是R中可以被约简掉的知识,否则不可被约简掉。定义2:对于任意r∈P(PR),若其中的P都是不可被约简的,则其等价关系族P是独立的,否则认为P是相关的。定义3:假定S=(U,R)为信息系统,如果子族PR满足下列条件:IND(P)=IND(R),而且P是独立的,则称P是R的一个约简。...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?