青铜峡高级中学2020(一)期中考试高一年级数学测试卷出卷人万自荣注意:所有题目的答案均写在答题卡上,交卷只上交答题卡一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.全集U={0,1,3,5,6,8},集合A={1,5,8},B={2},则集合()A.{0,2,3,6}B.{0,3,6}C.{2,1,5,8}D.2.函数的定义域为()A.B.C.D.3.已知是函数的反函数,则的值是()A.2B.C.16D.4.化简得的值为()A.B.2C.4D.5.下列四组函数,表示同一函数的是()A.,B.,C.,D.>,6.方程的解所在区间是()A.B.C.D.7.当时,在同一坐标系中,函数的图象是()ABCD8.函数的图象恒过定点()A.(2,2)B.(2,1)C.(3,2)D.(2,0)xy11oxyo11oyx11oyx119.若对于任意实数x,都有,且在(-∞,0]上是增函数,则()A.B.C.D.10.若,则的取值范围是()A.B.C.D.11.已知,且则的值()A.大于1B.等于1C.小于1D.以上都有可能12.已知奇函数在时的图象如图所示,则不等式的解集为()A.B.C.D.二.填空题(本大题共4小题,每小题5分,共20分.)13.若幂函数的图象经过点,则.14.已知函数是定义在上的奇函数,当时,,则,.15.已知函数,则的值是16.已知函数满足:对任意实数,有,且,写出一个满足条件的函数,则这个函数可以写为(注:只需写出满足条件的一个函数即可).三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)已知全集,,,.x201y(1)求;(2)如果集合,写出的所有真子集18.(本题满分12分)计算(1)(2);19.(本题满分12分)已知函数abbxaxfx,(1)(2为实数),xR,(1)若()fx有一个零点为-1,且函数()fx的值域为0,,求()fx的解析式;[(2)在(1)的条件下,当kxfxgxx(),()2,2][时是单调函数,求实数k的取值范围;20.(本题满分12分)已知(1)用单调性定义证明:在区间(0,+∞)上是增函数.y(千米)x(小时)4.43120()O(2)函数在区间[1,3]上的值域为,求函数的最大值和最小值21.(本题满分12分)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)请将图中的()内填上正确的值,并直接写出甲车从A到B的行驶速度;(2)求从甲车返回到与乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围.(3)求出甲车返回时行驶速度及A、B两地的距离.22.(本题满分12分)已知函数.(1)如果存在零点,求的取值范围(2)是否存在常数,使为奇函数?如果存在,求的值,如果不存在,说明理由。青铜峡高级中学2020(一)期中考试高一年级数学测试卷答题卡一、选择题(每小题5分,共60分)题号123456789101112答案二、(本大题共4小题,每小题5分,共20分.)13、14、15、16、三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.18.19.20.y(千米)x(小时)4.43120()O21.22.青铜峡高级中学2020(一)高一年级数学期中测试卷答案一、选择题(每小题5分,共60分)题号123456789101112答案ABADDCCADCBC二、(本大题共4小题,每小题5分,共20分.)13、914、-1415、616、三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1),,(2)集合的真子集有:18.(1)(2)19.解:(1)由题意得:解得:所以:(2)由(1)得此二次函数对称轴当时,是单调函数的条件是:解得:20.(1)证明:设且,则∴,∴∴,即∴在上是增函数(2)由(1)在[1,3]上是增函数,则在区间[1,3]上y(千米)x(小时)4.43120(60)OM当时,有最小值,当时,有最大值,.令,由得,则当即时,有最小值当即时,有最大值21.解:(1)由图可知,在小时,A、B相距120千米则甲车的速度为千米/小时(2)由已知,是甲返回,则M坐标为(4,60)设时,将(4,60),(4.4,0)带入得解得甲车返回到与乙车相遇过程中,(3)甲车速度为150-60=90千米/小时甲乙两地相距千米22.解:(1)令得,由于欲使有零点,(2)易知函数定义域为R。如果为奇函数,则,可得此时∴,所以,当时为奇函数