高考数学尖子生辅导专题(文理通用)之专题04利用导数证明函数不等式一-高考数学尖子生辅导专题

专题四利用导数证明函数不等式(一)函数不等式的证明由于其形式多变,方法灵活,成为了近几年高考的一个热点与难点,它一般出现在压轴题的位置,解决起来比较困难.利用导数作为工具进行证明是证明函数不等式的一种常见方法,本专题总结了利用导数证明一个未知数的函数不等式的常见方法,希望同学们看后有所收获,提升利用导数证明函数不等式的能力.模块1整理方法提升能力对于一个未知数的函数不等式问题,其关键在于将所给的不等式进行“改造”,得到一平一曲、两曲两种模式中的一种.当出现一平一曲时,只需运用导数求出“曲”的最值,将其与“平”进行比较即可.当出现两曲时,如果两个函数的凸性相同,则可以考虑通过曲线进行隔离.由于隔离曲线的寻找难度较大,所以我们一般希望两个函数的凸性相反.当两个函数的凸性相反时,则可以寻找直线(常选择公切线或切线)实现隔离放缩,当然最理想的直线状态是该直线与轴平行或重合.当改造的过程中出现一斜一曲时,一般要将其继续改造,要么将其化归到一边,转化为一平一曲,要么将其转化为两曲.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与、有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与、有关的常用不等式的生成.生成一:利用曲线的切线进行放缩设上任一点的横坐标为,则过该点的切线方程为,即,由此可得与有关的不等式:,其中,,等号当且仅当时成立.特别地,当时,有;当时,有.设上任一点的横坐标为,则过该点的切线方程为,即,由此可得与有关的不等式:,其中,,等号当且仅当时成立.特别地,当时,有;当时,有.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数.生成二:利用曲线的相切曲线进行放缩由图可得;由图可得;由图可得,(),();由图可得,(),().综合上述两种生成,我们可得到下列与、有关的常用不等式:与有关的常用不等式:(1)();(2)().与有关的常用不等式:(1)();(2)();(3)(),();(4)(),().用取代的位置,相应的可得到与有关的常用不等式.例1设函数,曲线在点处的切线为.(1)求、;(2)证明:.【解析】(1)因为,,而,所以,解得,.【证明】(2)法1:(寻找公切曲线隔离)由(1)知,,于是.由于混合了指数函数、对数函数和幂函数,比较复杂,所以可以考虑将指数函数、对数函数进行分离,改造为.令,则,由可得,由可得,所以在上递减,在上递增.而递减,所以两个函数的凸性相同(都是下凸函数).此时,我们可以寻找与两个曲线都相切的曲线,将两个函数进行隔离,从而实现证明.,令,则,由可得,由可得,所以在上递减,在上递增,所以,于是.,令,则,由可得,由可得,所以在上递减,在上递增,所以,于是.由于等号不能同时成立,所以.法2:(寻找公切线隔离)由(1)知,,于是,将不等式改造为.令,则.由可得,由可得,所以在上递减,在上递增,所以.令,则.由可得,由可得,所以在上递增,在上递减,所以.两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线,将两个函数进行隔离,又因为等号不能同时成立,所以.【点评】法1中的两个函数凸性相同,因此需要寻找公切曲线进行隔离,公切曲线的寻找需要有一定的函数不等式放缩经验.该放缩与常用不等式以及有关,因此熟练掌握与、有关的常用不等式,能有效打开某些不等式的证明思路,使题目的难度降低.法2中的两个函数凸性相反,且两个函数的最值相同,此时可寻找到与轴平行的公切线,实现隔离放缩.如何恰当地“改造”函数是解题的关键,这需要我们熟悉与、、四则运算组合后的函数,如:(1)、、、…过原点,先减后增;(2)、、、…过原点,先增后减;(3)、、、…在上递减,在上先减后增;(4)、、、…在上先减后增;(5)、、、…在上先增后减;(6)、、、…在上递减,在上先减后增.例2已知函数.(1)求曲线在点处的切线方程;(2)求证:当时,.【解析】(1),因为在曲线上,且,所以切线方程为,即.【证明】(2)法1:.当时,,令,则,,于是在上递...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?