主成分因子分析报告步骤

实用文案主成分分析、因子分析步骤不同点主成分分析因子分析概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量主要目标减少变量个数,以较少的主成分来解释原有变量间的大部分变异,适合于数据简化找寻变量间的内部相关性及潜在的共同因素,数据结构检测适合做强调重点强调的是解释数据变异的能力,以方差为导向,使方差达到最大强调的是变量之间的相关性,以协方差为导向,关心每个变量与其他变量共同享有部分的大小最终结果应用形成一个或数个总指标变量反映变量间潜在或观察不到的因素变异解释程度它将所有的变量的变异都考虑在内,因而没有误差项只考虑每一题与其他题目共同享有的变异,因而有误差项,叫独特因素是否需要旋转主成分分析作综合指标用,不需要旋转因子分析需要经过旋转才能对因子作命名与解释是否有假设只是对数据作变换,故不需要假设因子分析对资料要求需符合许多假设,如果假设条件不符,则因子分析的结果将受到质疑因子分析1【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。标准文档.实用文案Extraction)对话框设置(2)因子抽取(方法:默认主成分法。主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。输出:为旋转的因子图1.抽取:默认选25.最大收敛性迭代次数:默认)对话框设置3()因子旋转(Rotation。。因子旋转的方法,常选择“最大方差法”“输出”框中的“旋转解”标准文档.实用文案Scores)对话框设置(4)因子得分(“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。Options)对话框设置(5)选项(结果分析2检验's1)KMO及Bartlett(Bartlett的检验KMO和.515Kaiser-Meyer-Olkin取样足够度的度量。3.784近似卡方的球形度检验Bartlett6df.706Sig.的观Kaiser愈适合作因子分析值愈大当KMO时,表示变量间的共同因子愈多,。根据标准文档.实用文案>、KMO>0.6(普通)、KMO>0.7(中等)、KMO点,当KMO>0.9(很棒)、KMO>0.8(很好)。0.5KMO<(不能接受)0.5(粗劣)、)公因子方差(2公因子方差起始撷取.8551.000卫生.8461.000饭量.8191.000等待时间.919味道1.000.608亲切1.000撷取方法:主体元件分析。Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。共同度低说明在因子中的重要度低。一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。(3)解释的总方差说明的变异数总计元件各因子的特征值因子贡献率因子累积贡献率总计变异的%累加%总计变异的%累加%总计变异的%累加%12345元件12撷取方法:主体元件分析。2.4511.595.662.191.100元件评分共变异数矩阵149.02431.89913.2463.8232.00821.0001.000.00049.02480.92394.16897.992100.000.0002.4511.59549.02431.89949.02480.9232.0422.00440.84340.07940.84380.923撷取方法:主体元件分析。第二列:各因子的统计值第三列:各因子特征值与全体特征值总和之比的百分比。也称因子贡献率。第四列:累积百分比也称因子累积贡献率第二列统计的值是各因子的特征值,即各因子能解释的方差,一般的,特征值在1以上就是重要的因子;第三列%是各因子的特征值与所有因子的特征值总和的比,也称因子贡献率;第四列是因子累计贡献率。如因子1的特征值为2.451,因子2的特征值为1.595,因子3,4,5的特征值在1以下。因子1的贡献率为49.0%,因子2的贡献率为31.899%,这两个因子贡献率累积达80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。标准文档.实用文案、2个变量,fac1_1至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了因子得分。fac2_1,即为4)成分矩阵与旋转成分矩阵(从该表中并无法清楚地看出每个变量到底应归属于哪个因成分矩阵是未旋转前的因子矩...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?