研究基于神经网络的中国认股权证实证

基于神经网络的中国认股权证实证研究*张轲1,2ZhangKe潘和平1,2,3,4HepingPan1电子科技大学经济与管理学院成都6100542电子科技大学预测研究中心成都6100543西南财经大学中国金融研究中心国际金融预测研究所成都4SwingtumInstituteofIntelligentFinance,Australia摘要:本文利用中国权证市场上三只不同标的股票的欧式认股权证2008年6月13日至2009年1月9日间的交易数据为样本,通过对比BP,径向基函数以及广义回归神经网络在不同输入变量、相同样本区间情况下上对认股权证价格预测的表现,不仅证明了径向基函数神经网络和广义回归神经网络在样本区间上对认股权证的预测能力优于BP神经网络,同时也证明了修改传统BP神经网络定价模型输入变量可以提高预测精度,并进一步证明了在中国认股权证市场上投机氛围比较严重。关键词:BP神经网络RBF神经网络GRNN神经网络权证预测一、引言权证对于中国股市来说,早已不是新鲜事物。早在1995—1996年间,沪深股市就曾经出现过配股权证,当时深宝安、桂柳工等上市公司向流通股东发行一种配股权证,规定权证到期后持有人可以优惠价格购买公司新发行的股票。上市交易的配股权证后来遭遇疯狂炒作,宝安配股权证最高被炒到元以上,已经远远高于其股票的价格,成为一张废纸。最后许多权证到行权日时,都以几分钱的价格结束交易退出市场,很多投资者血本无归。鉴于权证的疯狂投机,从1996年12月之后,管理层叫停了权证交易。但是事隔9年之后,权证却因股改而重回股市。2005年8月22日,第一只股改权证宝钢权证在上交所挂牌上市。权证缴付一定比例的权利金即可交易,对于投资者而言可运用杠杆原理进行投资,即运用小额的资金运作,进*作者简介张轲(1985—),男,四川资阳人,硕士研究生,研究方向:金融工程。通讯地址:成都市成华区建设北路二段四号电子科技大学逸夫楼304,邮编610054,电子邮件:zhangk@swingtum。潘和平(1961—),男,陕西西安人,电子科技大学预测研究中心主任,西南财经大学中国金融研究中心国际金融预测研究所所长,教授,博士生导师,研究方向:智能金融,全球宏观金融,预测科学技术。通讯地址:成都市成华区建设北路二段四号电子科技大学逸夫楼340,邮编610054,电子邮件:panhp@swingtum。---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---而扩大投资标的股的总值,其获益或亏损会比直接购买股票大,但也因其倍数获利的杠杆效果以及投资人只享履约权利而无履约义务,而成为吸引投资人的最大诱因。现行的权证定价模型,大致可以分为基于传统B-S模型的参数化定价模型以及以数模型、蒙特卡洛和有限差分等为代表的数值方法等定价模型。但对传统的B-S模型而言,是以发达国家成熟的金融市场为基础建立起来的,同时有着诸如股价服从对数正态分布,股票的连续收益服从正态分布等苛刻的前提建设。但在现实的证券市场中,这些苛刻的假设往往很难得以满足;同时由于我们国家的证券市场成立时间还比较短,机制还不是十分的健全,市场还不是十分的成熟。由于以上种种原因的制约,使得以传统B-S为代表以及建立在B-S模型基础上的参数化定价方法,在我国的权证市场上的定价效果不是十分的好,误差比较大。对以树模型、蒙特卡洛以及有限差分为代表的数值方法定价模型而言,虽然这些数值的定价方法,在一定程度上可以减小B-S公式所带来的误差,但是也只是对处于两平状态(inthemoney)下的权证定价效果比较好,多于处于深度虚值或深度实值的期权,应用数值化的定价方法同样会产生较大的误差。人工神经网络是由大量的与自然神经系统相类似的神经元广泛连接而成以模拟人脑思维方式的非线性系统,具有高速计算和学习的特性,在复杂系统的建模问题上表现出了它的优越性,在预测、评价等方面取得了很好的应用效果。权证价格具有复杂的动态非线性特征,传统的参数化定价模型难以反映这种复杂性,在实际操作上易产生价格偏误的现象。人工神经网络定价方法作为非线性工具,与权证价格所具有的非线性动力学特性相吻合,为解决这一难题提供了一定的希望。在已有的研究中,多采用BP神经网络来对权证的价格进行预测,但BP...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

文秘专家
机构认证
内容提供者

1

确认删除?