引言生物质是一种可再生的资源,在其利用的过程中对大气环境的CO2净排放量为0。在我国,每年大约产生6亿t农业废弃物(如秸秆、稻壳等)及大量的林业废弃物(木屑等),这些废弃物除部分被作为燃料、饲料、肥料以及工业原材料利用外,还有相当一部分没有得到有效利用。由于化石能源逐步枯竭及其使用过程中的环境问题,生物质的合理利用引起了人们的广泛关注。生物质的利用方式主要有气化、热解、液化、发酵以及厌氧消化等,生物质制氢可将大量低品质生物质能转化为清洁的高品质氢能。超临界水气化(Supercriticalwatergasification,缩写为SCWG)是20世纪70年代中期由美国麻省理工学院(MIT)的Modell提出的新型制氢技术。超临界水(SCW)是指温度和压力均高于其临界点(温度374.15℃,压力22.12MPa)的具有特殊性质的水。SCWG是利用超临界水强大的溶解能力,将生物质中的各种有机物溶解,生成高密度、低黏度的液体,然后在高温、高压反应条件下快速气化,生成富含氢气的混合气体。在超临界水中进行生物质的催化气化,生物质的气化率可达到100%,气体产物中H2的体积百分含量甚至可超过50%,反应不生成焦油、木炭等副产品,不会造成二次污染。对于含水量高的湿生物质可直接气化,不需要高能耗的干燥过程。目前国内外有关生物质的超临界水气化研究进行得比较少,主要是由于超临界水气化所需的反应温度和压力对设备和材质的要求较高。但随着人们对超临界水独特的理化特性的逐步了解,生物质的可再生性、以氢为燃料的燃料电池的高效性等所带来的良好的经济前景和环保优势,使超临界水催化气化制氢技术正日益为人们所重视。目前,在美国能源部氢能项目的资助下,美国GeneralAtomics公司正在努力将超临界水气化制氢技术推向中试及大规模工业化应用,早在2008年就建立一套工业化示范装置。1生物质超临界水气化制氢的反应机理及特点1.1反应机理生物质超临界水气化制氢技术中,氢气的生成机理非常复杂,至今还不清楚。现有的技术也难以对生物质转化的中间产物进行分离和定量测量。已有的研究结果表明,生物质气化过程可能包含高温分解、异构化、脱水、裂化、浓缩、水解、蒸汽重整、甲烷化、水气转化等一系列的反应过程,最终生成气体和焦油[1]。溶解的生物质在超临界水中首先进行脱水、裂化等反应步骤后由大分子生物质分解成小分子化合物,而这些小分子化合物在高浓度的生物质气化时容易重新聚合。气化生成的气体如CO、H2、CH4等可能会进行甲烷化、水气转化反应。甲烷化反应:CO+3H2→CH4+H2OΔH=-210kJ/mol(1)水气转化反应:CO+H2O→CO2+H2ΔH=-41kJ/mol(2)显然,如何抑制可能发生的小分子化合物聚合以及甲烷化反应,促进水气转化反应,是提高生物质气化效率和氢气产量的有效途径。如果将生物质的分子式写成CxHyOz,理论上讲,1mol的生物质能够达到最大的氢气产量为(2x-z+y/2)mol。Minowa[2]等研究了纤维素在催化剂作用下的气化情况,指出水解反应在第一步反应中起了非常重要的作用,但是也有其他的研究者持不同观点,强调其他种类的反应如高温分解和甲烷化反应在第一步反应中起了非常重要的作用。Kruse[3]等研究发现,亚临界条件下主要进行离子反应,生成五原子环状化合物,如糠醛;超临界条件下主要进行自由基反应,生成气体;同时指出超临界水的浓度低,有利于进行生成气体(如H2和CH4)的自由基反应。为了研究生物质超临界水气化过程的反应机理,研究者把反应中化学物理性质相对稳定、能够代表不同的反应路径、通过定量和定性分析可以鉴别生物质反应路径的这一类化合物叫关键化合物。实际上它们是生物质分解的中间产物,在模型生物质和原生生物质的气化实验中均可以发现这些关键化合物,它们表现出相同的属性。已有的研究发现,这些关键化合物有(食)糖、醛(甲醛和乙醛)、酸、糠醛、苯酚和气体。Synag[4]等研究发现,关键化合物的形成和数量主要取决于实验条件,如温度、反应时间、催化剂、所用生物质的组成。应当指出,生物质SCWG中一般都会有苯酚产生,并且其产量随温度的升高而增加。苯酚的分解速率要比纤维素分解时所形成的小分子脂肪族化合物及糠醛的分解要慢,它对气体的生成有负面影响。普遍认为,苯酚是生物质完全气化的“...