数学分析中的化归法共28页

数学分析中的化归法目录数学分析中的化归法摘要:化归法是数学中常用的一种研究和解决数学问题的方法,有着重要的作用和意义。何谓“化归”,从字面上看可以理解为转化和归结的的意思。化归法主要是将一些不熟悉和未解觉的问题通过各种转化,变成我们已经熟悉和解决的问题或是容易解决的问题,从而达到证明和求解的目的,它是解决难题的有效途径;数学分析是一门内容复杂的课程,主要研究极限、导数、积分、级数等内容。化归法自始至终都渗透在数学分析教材中,因为数学分析所研究得对象是函数,而研究函数的方法是极限,在数学分析中所有的概念几乎都离不开极限,而极限是为了使一些实际问题的求解更精确而产生的,在求这些实际问题的过程中都运用到了化归法。化归法在数学分析中有着广泛的应用,在数学分析中有很多的问题都可以用化归的思想来解决。关键词:化归;化归法;数学分析;化归法的应用:O1-0ThereductionmethodofmathematicalanalysisAbstract:Reductionmethodisacommonmethodofresearchingandsolvingthemathematicsproblemswhichplaysanimportantroleandhasbigsignificance.Whatis“reduction”,itcanbeliterallyunderstoodasthetransformationandresolution.Inordertoachievethepurposeofprovingandsolving,reductionismainlytotransformsomeunfamiliarandunsolvedproblemsintofamiliarandsolvedproblemsortheproblemwhichiseasytosolve,itisaneffectiveapproachofsolvingthedifficultproblems.Mathematicalanalysisisacomplexcourse,mainlystudiesthelimit,derivative,integral,seriesetc.Reductionmethodalwaysinfiltratesinteachingofmathematicalanalysis,becausetheresearchobjectofmathematicalanalysisisthefunction,andstudiesonthefunctionofthemethodisthelimit,inthemathematicalanalysis,alltheconceptsarealmostinseparablefromthelimit,andtheexistenceoflimitistomakesomeresolutionsofpracticalproblemmoreprecise,thereductionmethodisusedintheprocessofsolvingthepracticalproblem.Reductionhasawiderangeofapplicationsinmathematicalanalysis;alotofproblemscanbesolvedbythereduction.Keywords:Reduction;Reductionmethod;Mathematicalanalysis;Theapplicationofreductionmethod1绪论数学问题的解决往往有很多的方式、方法,在这些方式、方法中有一个共同的特点,就是化归。在学术界有一个这样的故事,也许这个故事更能体现化归的思维特点。有人提出了这样的一个问题:“假设在你的面前有水龙头、火柴、煤气灶、和水壶,你想烧一些水,应该怎么做呢?”对此,有人这样回答:“把水壶里灌上水,点燃煤气灶,然后把水壶放在煤气灶上。”提问者对这一回答给予肯定。接着,提问者又问到:“假如现在水壶里盛满了水,其他的条件都没有变化,又该如何做呢?”此时被提问者会很有自信的回答道:“直接点燃煤气灶,然后再把水壶放在煤气灶上即可。”这个答案会使人比较容易接受,但提问者指出:“这个答案不能使我感到满意,因为只有物理学家才会这样做,而数学家则会把水壶里的水倒掉并说我已经把这个问题转化为第一个已经解决的问题了。”在这个故事中也包含着这样一层意思:即化归法是数学家们所常用的一种方法。化归法是数学研究中的一种重要的技能和方法,它就是把有待解决和未解决的问题通过各种转化、归结到一类已经解决的或者比较容易解决的问题中去,最终求得原问题之解的方法。目前,随着数学科学发展至今,化归法逐渐走向成熟,渗入到数学的各个领域中,化归法也有着广泛的应用。本篇论文将主要阐述化归法在数学分析中的应用,在数学分析中有很多的问题都可以用化归的思想来解决。1.1化归法的背景对化归法的研究有着漫长的经历,这要从费尔玛大定理的证明谈起。1637年费尔玛留下了著名的费尔玛猜想,在此后的几百年时间里,众多著名的数学家对此进行了漫长的证明求解过程,主要分为三次重大的突破;第一次重大突破是1857年,德国数学接库麦尔引入分圆数和理想数,开创了分圆数和理想数的数学分支;第二次重大突破是1983年,德国29岁的青年...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?