学习绩效预测模型构建源于学习行为大数据分析

学习绩效预测模型构建源于学习行为大数据分析摘要:随着教育大数据分析技术的发展,学习预测研究已成为学习分析技术的一个重要研究方向,但通过不同场景学习行为日志数据进行学习预测研究较少。研究采集了823名大学生学习场景中在线学习日志数据和生活场景中一卡通消费和借阅图书日志数据,构建在线学习行为、早起行为、借阅行为和学习绩效预测指标,通过五种机器学习模型对学习绩效进行预测分析,结合提升(Boosting)和装袋(Bagging)两种方法提升预测模型的准确率,并与人工神经网络和深度神经网络模型进行预测性能对比。研究表明,多场景行为表现指标有较强的预测能力,深度神经网络模型预测准确率最高(82%)但耗时最多。同时,结合决策树与规则模型建立了分类规则集,构建了一种结合决策树和深度神经网络的学习行为诊断模型,该模型兼具高预测准确率、易读性高和易操作等特点,可实现多场景学习行为诊断,实现精准教学干预与学习资源推荐。关键词:大学生,学习行为,多场景,学习绩效,预测模型,机器学习,决策树,神经网络本文系重庆市教委科学技术研究青年项目“基于教育大数据的大学生外语学习行为分析研究”(项目编号:KJ政法K201900901)、重庆市高等教育教学改革研究一般项目“以核心素养为本位的学习行为大数据分析研究”(项目编号:193150)和四川外国语大学教改重点项目“以核心素养为本位的学习行为大数据分析研究”(编号:JY1965108)的研究成果。一、引言随着教育大数据的广泛应用,学习预测研究已成为学习分析技术的一个重要研究方向。学习分析技术已从原理探究、应用价值等理论研究转向基于教育大数据的学习行为分析、数据可视化、学习预测等实际应用研究(胡航,等,2020)。学习预测研究主要依据之前和当前的学习活动特征对学习者未来的结果表现进行预估,如学习成绩、学习目标和学习能力等,通过不同形式的学习预测来改善学习成效和学习体验(AlShammari,Aldhafiri,Al----本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---Shammari,2013;Nkhoma,Sriratanaviriyakul,Cong,Lam,2014)。学习结果预测集中在成绩预测理论模型构建、成绩预测模型实证研究、算法准确性对比、算法开发、预警因素研究和综述研究等方面,主要采用决策树、回归分析、神经网络、朴素贝叶斯、支持向量机等方法来预测学习绩效和学习效果(王改花,等,2019)。随着机器学习、情感分析、模式识别等智能技术的不断发展和成熟,特别是深度神经网络识别技术与教育领域的结合,为学习预测研究提供了有力的技术支撑,逐步应用于学生学习追踪、表现预测、教学辅助工具和行为分析等场景(陈德鑫,等,2019)。尽管学习预测研究有了一些初步成果,但以优化学习过程和改善学习成效为目标的学习预测研究还未在教育领域得到深入实践和应用,距离准确和大规模应用还较远(牟智佳,等,2017)。如何建立具有较高预测性能、兼具易读性和易操作性的学习预测方法,并依据预测结果进行差异化的干预与推荐应用,成为亟待解决的问题。本研究采用深度神经网络结合机器学习分析技术,运用多场景学习行为数据,构建学习行为诊断模型,以期为学习绩效预测分析和学习干预提供参考和指导。二、研究基础与研究问题(一)基于机器学习的预测研究机器学习是一组使计算机能够在没有人为编程干预的情况下进行自我学习的新技术,在社会的各个行业得到广泛应用(Kannammal,2015)。随着技术的不断成熟,机器学习中的监督学习在教育领域的应用也越来越广泛和深入。监督学习主要寻找能够从外部提供的实例中进行推理的算法,从而产生一般的假设,其目标是根据预测器的特征建立一个清晰的类标签分类模型(Kotsiantis,2007)。监督学习在教育领域中的研究内容主要集中在成绩预测理论模型构建、成绩预测模型实证研究、算法准确性对比、算法开发、预警因素研究、综述研究等方面。黄等(HuangFang,2013)基于多元线性回归(MultipleLinearRegressions,MLR)、多层感知网络(Multi-LayerPerceptron,MLP)、径向基函数网络(RadialBasisFunction,RBF)和支持向量机(SupportVect...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?