经济数学中的边际与弹性分析

经济数学中的边际与弹性分析朱文涛(健雄职业技术学院商贸系,江苏太仓215411)摘要:边际与弹性是经济数学中的重要概念,是微分学在经济分析中应用的一种有效的方法。本文从经济数学理论中的“边际”和“弹性”出发,对目前企业管理中常见的几个问题进行了数学化讨论和数学模型的建立,包括最低成本、最优利润和价格变动对销售收入的影响模型等。关键词:边际;弹性;经济数学:F224文献标识码:A边际分析和弹性分析是经济数量分析的重要组成部分,是微分法的重要应用。它密切了数学与经济问题的联系。在分析经济量的关系时,不仅要知道因变量依赖于自变量变化的函数关系,还要进一步了解这个函数变化的速度,即函数的变化率,它的边际函数;不仅要了解某个函数的绝对变化率,还要进一步了解它的相对变化率,即它的弹性函数。经过深层次的分析,就可以探求取得最佳经济效益的途径。一、边际及其经济意义边际作为一个数学概念,是指函数y=f(x)中变量x的某一值的“边缘”上y的变化。它是瞬时变化率,也就是y对x的导数。用数学语言表达为:设函数y=f(x)在(a,b)内可导,则称导数为f(x)在(a,b)内的边际函数;在处的导数值称为f(x)在处的边际值。根据不同的经济函数,边际函数有不同的称呼,如边际成本、边际收益、边际利润、边际产值、边际消费、边际储蓄等。本文主要分析前三个边际函数的应用。1、边际成本。在经济学中,把产量增加一个单位时所增加的总成本或增加这一个单位产品的生产成本定义为边际成本,边际成本就是总成本函数在所给定点的导数,记作MC=C′(q)。2、边际收益。是指销售量增加一个单位时所增加的总收益或增加这一个单位的销售产品的销售收入,是总收入函数在给定点的导数,记作MR=C′(q)。3、边际利润。对于利润函数L(q)=R(q)-C(q),定义边际利润为L′(q)=R′(q)–C′(q)=MR-MC,表示指销售量增加一个单位时所增加的总利润或增加这一个单位销售量时利润的改变量。二、边际理论的应用模型边际分析理论是当代经济理论中数学方法的基础之一,可用来预测商品价格需求量或供给量,确定企业内部生产资料同劳动数量之间最合理的比例;确定企业的最佳规模,直至最---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---合理的分配整个社会的资源等问题。下面主要探讨一下,如何利用边际理论决策最低成本、最优利润,以提高企业经营管理水平。1.建立最低成本的模型从图1可知,由于平均成本包括有产量的增加而始终递减的固定成本,同时它又是按全部产量平均计算的,所以它的曲线由递减转为递增较边际成本曲线为迟。边际成本与平均成本之间有一个很重要的关系。从上图来看,当平均成本与边际成本相等时,MC=AC,平均成本为最低,也就是说,边际成本曲线MC与平均成本曲线AC相交于平均成本曲线的最低点处F处。这一点就是通常所谓的“经济能量点”或“经济有效点”,也就是成本最低的一点。企业家应该把生产规模调整到平均成本的最低点(即F点),才能使生产资源得到最有效的利用,增加盈利。建立模型的程序如下:第一步:建立子模型MC=(1)AC=(2)其中:Q—产量;TC—总成本;AC—平均成本;MC—边际成本第二步:建立最优化成本数学模型。(推导略)(3)满足上述(3)的Q值的生产规模,可以使AC达到最小值。举例:TC(Q)=300+6Q+0.02QMC=TC(Q)==6+0.04Q---本文来源于网络,仅供参考,勿照抄,如有侵权请联系删除---AC=()=0.02—所以,6+0.04Q=得到:此时0.02—=0故产量达100时,AC最低2、建立最大利润模型如何求最大利润?当商品产量无限增大时,价格极低,得不到最大利润;价格无限增大时,销售量极少,也得不到最大利润。如图2看出,只有在边际收益等于边际成本时,即两条切线平行,收入和成本两个函数的导数相等时,这两条曲线间的距离最大,才达到最大利润,才能找到合理的生产模型。此外为了是利润极大值存在,利润函数的二阶导数还必须小于零。建立的模型程序为:第一步:建立子模型MR=(4)MC=(5)其中:Q—产量;TC—总成本;TR—总收益;MC—边际成本;MR-边际收益第二步:建立最优化利润模型。---本文来源于网络,仅供参考...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?