基于多代竞争遗传的车辆配送路径多峰寻优研究

基于多代竞争遗传的车辆配送路径多峰寻优研究摘要:为了高效完成车辆配送路径多峰寻优任务,提出基于多代竞争遗传的车辆配送路径多峰寻优方法。设计车辆配送路径多峰寻优的目标函数与约束条件,构建开放式车辆路径优化模型,求解车辆路径优化的路径多峰寻优目标函数,引用多代竞争遗传方法,求解车辆配送路径多峰寻优模型,完成车辆配送路径多峰寻优。仿真实验结果显示:所提方法对模拟区域车辆配送路径实施多峰寻优时,4辆车的配送时间均值为47.43h、迭代次数均值为149次、寻优时间均值为2.40s,寻优时间较短,车辆配送成本较少,实际应用价值显著。关键词:物流;多代竞争遗传;车辆配送;路径寻优;多峰寻优:U116文献标识码:AAbstract:Inordertoefficientlycompletethemultipeakoptimizationtaskofvehicledistributionpath,amulti-modaloptimizationmethodofvehicledistributionpathbasedonmulti-generationcompetitivegeneticalgorithmisproposed.Thispaperdesignstheobjectivefunctionandconstraintconditionsofmultipeakoptimizationofvehicledistributionpath,constructsanopenvehicleroutingoptimizationmodel,solvesthemultipeakoptimizationobjectivefunctionofvehiclerouting第1页共4页optimization,andusesthemultigenerationcompetitivegeneticmethodtosolvethemultipeakoptimizationmodelofvehicledistributionpath,andcompletesthemultipeakoptimizationofvehicledistributionpath.Thesimulationresultsshowthattheaveragedistributiontimeoffourvehiclesis47.43h,theaveragenumberofiterationsis149,andtheaverageoptimizationtimeis2.40s.Theoptimizationtimeisshorter,thevehicledistributioncostisless,andthepracticalapplicationvalueissignificant.Keywords:logistics;multigenerationcompetitiveinheritance;vehicledistribution;pathoptimization;multimodaloptimization0引言合适的车辆配送路径,将缩短运输距离,减少配送成本,配送时间也将得以缩短,目前很多研究人员对车辆配送路径寻优问题进行了深入研究,例如叶勇等[1]提出基于狼群算法的车辆配送路径寻优方法,该方法可在降低车辆配送成本的条件下,有效获取车辆配送最佳路径,但是该方法在获取车辆配送最佳路径时,寻优次数较多,收敛速度慢;李卓等[2]提出基于混合蚁群算法的车辆路径规划方法,蚁群算法在求解车辆路径寻优中较为常用,可在短时间内获取车辆配送最佳路径,但是在所寻路径中配送时,与同类算法相比,车辆配送成本较多,在车辆路径寻优时的收敛效率也并不显著。夏扬坤等[3]为了降低连锁超市的配送系统总成本,设第2页共4页计了一个自适应禁忌搜索算法,采用“随机禁忌长度”和“禁忌表重新初始化”来对邻域进行充分搜索,结合各超市配送的时效性,建立了相应的双目标数学模型,增强算法的全局寻优能力,但是其约束条件不明确,无法获取全局最优解。贺桂和等[4]为了促进农产品流通,降低农产品电商物流配送成本,将传统约束中客户需求不可拆分的条件进行松弛,结合传统带时间窗的车辆路径问题,研究了一种带软时间窗的需求单元拆分车辆路径问题,提升禁忌搜索算法的全局寻优性能,有助于减少使用的车辆数和降低配送成本,但是其算法应用过程的迭代稳定性较差,无法实现多峰寻优。戚远航等[5]提出一种泰森多边形的离散蝙蝠算法,融入了一种基于多车场多车辆问题的编解码策略,求解多车场车辆路径问题,表现出较强的寻优能力和稳定性,但是其目标函数与约束条件不明确,其不支持多峰寻优任务。车辆配送路径多峰寻优,可理解为车辆配送路径中多个高峰期的最优路径规划,此问题属于非线性函数多峰寻优问题,本文针对此问题进行深入研究。为此,本文提出基于多代竞争遗传的车辆配送路径多峰寻优方法,本文中的多峰寻优是指在车辆配送的高峰时段下,由固定的物流中心安排可以匹配最佳路线的车辆进行配送,是面向全时间段的车辆配送路径多峰寻优,其关键在于优化遗传算法收敛效率,并在车辆配送路径多峰寻优问题中,应用多峰函数,结合闭区间上连续函数的零点存在定理,求解最优的车辆配送路径即⑷局最优解转换为车辆配送路径种群规模最优化问题,以多峰寻优的目第3页共4页标函数与约束条件为基础,求解车辆配送路径多峰寻优模型,使其具有较为显著的优化效果。第4页共4页

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供参考,付费前请自行鉴别。
3、如文档内容存在侵犯商业秘密、侵犯著作权等,请点击“举报”。

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

客服邮箱:

biganzikefu@outlook.com

所有的文档都被视为“模板”,用于写作参考,下载前须认真查看,确认无误后再购买;

文档大部份都是可以预览的,笔杆子文库无法对文档的真实性、完整性、准确性以及专业性等问题提供审核和保证,请慎重购买;

文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为依据;

如果您还有什么不清楚的或需要我们协助,可以联系客服邮箱:

biganzikefu@outlook.com

常见问题具体如下:

1、问:已经付过费的文档可以多次下载吗?

      答:可以。登陆您已经付过费的账号,付过费的文档可以免费进行多次下载。

2、问:已经付过费的文档不知下载到什么地方去了?

     答:电脑端-浏览器下载列表里可以找到;手机端-文件管理或下载里可以找到。

            如以上两种方式都没有找到,请提供您的交易单号或截图及接收文档的邮箱等有效信息,发送到客服邮箱,客服经核实后,会将您已经付过费的文档即时发到您邮箱。

注:微信交易号是以“420000”开头的28位数字;

       支付宝交易号是以“2024XXXX”交易日期开头的28位数字。

笔杆子文秘
机构认证
内容提供者

为您提供优质文档,供您参考!

确认删除?