题目7:(1)limx→1x2−3x+2x2−1=limx→1(x−2)(x−1)(x−1)(x+1)=limx→1x−2x+1=−12(2)limx→2x2−5x+6x2−6x+8=limx→2(x−2)(x−3)(x−2)(x−4)=limx→2x−3x−4=12(3)limx→0√1−x−1x===(4)limx→∞2x2−3x+53x2+2x+4=limx→∞2−3x+5x23+2x+4x2=13(5)limx→0sin3xsin5x=limx→0sin3x3xsin5x5x×35=35(6)limx→2x2−4sin(x−2)=limx→2(x−2)(x+2)sin(x−2)=limx→2x+2sin(x−2)x−2=4